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ABSTRACT 

Repair or replacement of the male anterior urethra remains a challenge in 2019 

especially in the case of patients presenting severe defects due to the paucity of tissues 

available for reconstructive surgeries. Nowadays, surgeons mainly use buccal mucosa, 

which can come with complications not only at the donor site but also at the graft site. 

This option is sometimes invasive in the case of long defects when large pieces of tissue 

are needed. Tissue engineering is an emerging field in regenerative medicine and 

offers promising avenue. It allows reconstruction of large amount of autologous tissues 

using small biopsies. Several strategies of tissue engineering use biomaterials, which 

can cause adverse effects. A new option appears with the use of the “self-assembly” 

protocol to reconstruct tissues using only the cells of the patients and avoiding the use of 

biomaterials. Human-derived tubular structures were produced by this technique and 

present mechanical and functional properties compatible with grafting. Moreover, 

these tissues can be endothelialized to prevent graft ischemia. New challenges in tissue 

engineering is to differentiate the cells needed for the reconstruction from induced 

pluripotent stem cells derived from patient blood cells, and to avoid the use of animal 

serum for cell culture. 

INTRODUCTION 

The function of the urinary tract is to produce (kidneys), convey (ureters), store 

(bladder) and finally excrete (urethra) the urine. Part of the reproductive function is 

also performed through urethra and neighboring tissues. The male urethra is divided in 

two parts: the posterior urethra, consisting in prostatic and membranous urethra, and 

the anterior urethra, consisting in the bulbar, pendulous or penile urethra, and fossa 

navicularis. Except for the fossa navicularis section, the urethra is lined by a 

pseudostratified epithelium known as urothelium. The urothelium consists in three parts: 

the basal layer containing cells with a great potential of division, the basal, progenitors 

and stem cells; several intermediate layers containing intermediate cells with some 

potential of division, depending of their level of differentiation; finally the superficial 

layer containing flattened cells without potential for division and terminally 

differentiated (sometimes binucleated), the umbrella cells. In the fossa navicularis, the 

epithelium is stratified squamous, roughly similar to the oral mucosa. Around the urethra 

is found the corpus spongiosum, a spongy tissue surrounding/supporting the urethra, 
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and the tunica albuginea, an elastin rich fibrous envelope. A 

thicker and more resistant version of tunica also envelops the 

two corpora cavernosa, the erectile tissue.  

CLINICAL CONDITIONS 

Male anterior urethra can be affected by several congenital 

and/or acquired anomalies, which could require surgical 

reconstruction to restore a normal genitourinary function. 

Hypospadias, for pediatric patients, and urethral strictures, for 

adult patients, are amongst the most common urethral 

pathologies in need of such reconstruction. 

Hypospadias is the most frequent malformation of the penis 

forming three-quarters of all congenital penile anomalies [1]: 

about 1 in 200 to 250 newborn males is affected [2,3]. Recent 

studies have reported an increasing prevalence of hypospadias 

[4-8]. It represents a defect in the tubularization of the urethral 

plate leading to a shorter urethra, resulting in an inadequate 

position of the meatus below the tip of the glans. The opening 

can be positioned anywhere along the ventral side of the penis, 

if the meatus is located to the dorsal side, the anomaly is called 

epispadias. The severity of hypospadias is determined 

depending on where the meatus is located: minor defect if the 

opening is close to the glans or severe defect if the meatus is 

close to the scrotum. Severe defects often require surgery [9-

11]. Due to its high prevalence and its impact, hypospadias 

represent an important health issue [12]. The cost of treatments 

could also be high. Indeed, patients affected by the most severe 

form of the congenital anomaly often suffer from post-

operative complications such as complete dehiscence, 

urethral/meatal stenosis or urethra-cutaneous fistulae, and then 

require subsequent surgeries [13]. 

The other frequent urethral disorder is the stricture. A stricture is 

the narrowing of the anterior urethra. Narrowing affecting the 

posterior urethra is called stenosis [14]. Male urethral stricture 

disease most commonly results from injury, instrumentation, non-

infectious inflammatory conditions of the urethra, hypospadias 

surgery and finally sexually transmitted disease [15]. Urethral 

strictures result in more than 5,000 inpatient visits yearly in the 

USA. Yearly office visits for urethral stricture numbered almost 5 

million between 1992 and 2000 [16]. The total cost of urethral 

stricture diseases in USA in 2010 was around $300 million. 

Yearly cost for health care expenditures is increased by more 

than $6,000 per individual following urethral stricture diagnosis 

[17]. Patients with urethral stricture also appear to have a high 

rate of urinary tract infection (41%) and incontinence (11%) 

[18]. 

CURRENT SURGICAL REPLACEMENT OPTIONS 

Repairing or replacing the urethra can be done using a wide 

variety of tissues, such as skin grafts (including genital and 

extragenital skin flaps), tunica vaginalis (around a testicle), and 

bladder, lingual or oral mucosa [19-24]. This latter is the current 

gold standard. However, many complications are encountered 

such as pain, numbness, submucosal scarring, salivary duct 

obstruction and injury [25,26]. The first use of the oral mucosa 

as urethral replacement has been done by Kirill Sapezhko, a 

surgeon from the Russian Empire, in 1890 [27]. This pioneer 

technique was also reported by Graham Humby in UK in 1941 

[28] and “rediscovered” in 1992 by Bürger in Germany [29] 

and Dessanti in Italy [30]. However, in comparison to autologous 

urethral tissue, all of these substitutes present limitations, which 

can lead to complications [31-33]. Furthermore, despite 

improvement of the harvesting technique, donor sites remain 

limited in the amount of tissue that can be harvested. This lack of 

sufficient amount of tissue to graft can be problematic in the 

case of long defects. Moreover, in the case of post-operative 

complications, the surgeon will not harvest this mucosa twice 

from the same site, limiting the surgical options. To overcome 

these difficulties, alternative methods for urethral reconstruction 

have been explored. 

TISSUE ENGINEERING STRATEGIES 

Current alternative strategies consist in the use of tissue 

engineering for urologic regenerative medicine [34,35]. 

Because of a lack of ideal tissue to reconstruct the urethra, 

many tissue engineering strategies have been attempted. The 

ideal engineered tissue to graft should be biocompatible, 

functional and support capillary and/or vascular networks. 

Some techniques are using biomaterials such as synthetic or 

natural polymers and acellular matrices [36], which have many 

advantages such as the possibility to dictate the macroscopic 

form of the graft and the ready-to-use format. 

Synthetic biomaterials such as poly (L-lactide) (PLLA) [37] and 

poly(lactide-co-glycolide) (PLGA) [38] have been tested. Such 

materials give the possibility to make biocompatible 3D- organs 

at a low cost, with controlled mechanical properties and 

degradation rates. But it also allows obtaining rapid and 
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reproducible results with low risk of biologic contaminants. 

However, synthetic biomaterial degradation could be 

problematic due to the presence of their hydrolytic degradation 

products released in the body. Furthermore, synthetic 

biomaterials do not provide an adequate environment for an 

optimal epithelial cell differentiation and organization, 

preventing the graft to fulfill its biologic functions [39]. 

In order to circumvent the drawbacks of using synthetic 

materials, several groups have used natural biomaterials such 

as type-I collagen [40] or silk [41]. The results remain poor with 

a 40% failure rate with collagen structures [42] which could be 

diminished to 10% when using low fiber density collagen graft 

[43]. 

Decellularized extracellular matrices have also been used, such 

as Small Intestine Submucosa (SIS), pericardium, Bladder 

Submucosa (BSM) and acellular corpus spongiosum matrix, for 

urethral replacement [44-46]. By decellularizing it, it is 

expected that mechanical properties will stay intact and 

biochemical environment remains identical to the living tissue. 

Despite the good results obtained, significant amounts of 

residual DNA have been detected, representing an immune risk 

for patients [47]. Indeed, if techniques used are too aggressive, 

extracellular matrix properties could be lost. The challenge is 

therefore to discard all immunogenic factors without losing of 

beneficial factors. Furthermore, vascularization was shown to be 

problematic since a lack of nutriments and oxygen can lead to 

ischemia, necrosis, fibrosis and transplant failure. 

The role of the cells inside the biomaterials, whatever their 

nature, remains essential especially to repair challenging 

conditions. Numerous types of cells have been used in urethral 

tissue engineering [48]. Urethral substitution were attempted by 

using acellular [41,42,49] or cellularized matrices [34,50-55]. A 

major concern about the use of acellular matrices is that 

urothelial regeneration (migration from host tissues) in acellular 

graft is limited to 0.5 cm in length, which compromises success in 

more complex cases, such as long strictures [56]. Tissue-

engineered matrices containing autologous cells, in addition to 

extracellular matrix, seem more promising. Using this method, a 

large autologous-cell graft could be produced from a small 

biopsy, with the ability to grow in vivo without rejection. 

Moreover, studies have reported that stem cells can be 

obtained from urine [57,58], making this approach even more 

attractive. Recently, Induced Pluripotent Stem Cells (iPS) also  

raised the attention of several groups to generate large amount 

of cells needed for the reconstruction [59-61]. Despite 

significant progress in the urethral tissue engineering field, there 

is very few published clinical trials [62]. However, the clinical 

trials conducted so far present good results in a limited number 

of patients with long-segment and/or complex stricture disease 

[20,63-66]. Many different techniques have been used in those 

trials, therefore, no consensus, can be established. The other 

question being debated is: should we test the tissue engineering 

options in first line cases that usually present fewer 

complications and offer a large volume of patients, or should 

we test it in severe and challenging cases where actual options 

are not optimal. If we test the tissue engineering models in those 

complex cases, it will face a greater challenge and it will be 

more difficult to establish it as an effective alternative. 

SELF-ASSEMBLY TECHNIQUE 

Because of a lack of ideal tissue to reconstruct the urethra, 

many tissue engineering strategies have been described. 

Nevertheless, despite the positive results of these biomaterials 

[67-69], weakness are persisting [47,70] leaving space for new 

alternatives. A novel way to produce reconstructed tissues has 

been discovered at the end of the twentieth century. Indeed, in 

the presence of ascorbic acid, human fibroblasts cultivated in 

vitro produce extracellular matrix such as collagen, which allows 

within a few days, establishment of a three-dimensional tissue-

like construct that can be manipulated [71,72]. This method 

called “self-assembly technique” has been further used to 

reconstruct blood vessels in 1998 [73]. Through the years, many 

tissues have been reconstructed using this technique such as 

bladder [74-76], hypodermis [77], urethra [78,79], cornea [80] 

and skin, with pathological or physiological diseases: psoriasis 

[81], scleroderma [82], hypertrophic scarring [83] and 

melanoma [84]. Severely burned patients are already treated 

by grafting autologous skin made with this technique [85]. This 

method is explained in (Figure 1A) for the flat model 

(reconstructed urethral patch) and (Figure 1B) for the 

tubularized model (tubular reconstructed urethra). This technique 

allows the reconstruction of urologic tissues presenting 

histological features similar to the native ones (Figure 2A). 
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Figure 1: Self-Assembly technique. A. To produce a urethral patch. B. To produce a tubular urethral model. 

Ascorbate is used during cell culture. Production of the stroma takes 1month and differentiation of the urothelial 

cells another month. 

 

Figure 2: Reconstructed urethra using the self-assembly technique for animal implantation: A. Microphotograph of are 

constructed urethra stained by the Masson’s trichrome protocol. Extracellular matrix is in blue and cells in pink/purple. 

Differentiation of the urothelium with basal, intermediate and superficial cells can be seen. B.6-cm Tubular substitutes in the 

bioreactor chamber. The mechanical strength could be appreciated. C. Tubular structure is prepared for the graft. 
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Because of its expensiveness, precise technical skill requirements 

and long culture time, this technique remains minimally used in 

the tissue-engineering field. However, recent research 

introducing the use of lysophosphatidic acid, allows reduction in 

cell culture time by increasing the amount of collagen deposited 

and consequently the stromal thickness, with improved 

mechanical properties resulting in a faster formation of a 

manipulable tissue. Also, by modifying the initial protocol, the 

production of tissue has been rendered relatively inexpensive 

and easy to perform while recreating a more physiological 

organization of the stroma, especially the distribution of the 

cells throughout the extracellular matrix [86, 87]. 

Clinical studies on urethroplasty showed a success rate of 81% 

when using buccal mucosa [88], not including the problems at 

the harvesting site, and 84.2% when using tissue engineered 

oral mucosa [89]. So, it could be expected that urethral 

substitute reconstructed using tissue engineering with organ-

specific cells should be an improvement. It is therefore possible, 

from a patient’s biopsy, to build stromal sheets, which could be 

rolled to create an autologous 3D urethra [78]. Mechanical 

characteristics of these models are roughly similar to the native 

tissue. Autologous epithelial cells can be seeded and cultured to 

maturity in the tube by using a dynamic flow in a bioreactor to 

mimic the in vivo tissue architecture [79]. Cells are therefore 

mechanically stimulated (Figure 2B,C) and tissues are strengthen 

by inducing a realignment of collagen fibers, as previously 

shown [90,91]. These reconstructed urological tissues were 

shown to express uroplakins and zonula occludens-1 in the 

epithelial superficial layer, which are essential for tissue function 

to prevent urine leakage. As vascularization of the graft is an 

important obstacle to avoid graft ischemia, the potential for 

adding endothelial cells has been tested in these models, in 

order to prevascularized them [86,92]. Tissues were successfully 

grafted on the back of mice. To further reduce the size of the 

biopsy needed to reconstruct the tissue, protocols to preserve 

stem cells during the expansion of the biopsy-extracted 

urothelial cells has been developed [93]. And in order to 

improve the quality of the urothelial differentiation, the use of 

organ-specific cells has also been recently done [94]. 

However, the use of animal models is required before human 

implantation to validate the model and avoid unnecessary 

complications for patients. Rabbits have similar urethral 

organization compared to the human and have already been 

chosen to test urethral reconstruction based on collagen gels 

[40]. Producing a tube, which can be mechanically compared to 

the human model, is the main objective. However, due to 

differences in the protocol to produce rabbit stromal tissue [38], 

it could be preferable to use human stromal tissue, presenting a 

very weak immunogenic potential [95], instead of rabbit 

stromal cells. The goal is to cure a human condition with human-

specific engineered tissues, not to develop a rabbit model. 

Therefore, introducing modifications to the techniques to 

produce the human tissue could be a drawback with regard to 

the regulatory agencies. We must keep our production protocol 

as simple as possible and we need a uniform technique (same 

for animal implantation then for the human application) to build 

our case for the regulatory authorities. Urothelial cells 

autologously extracted from rabbits will be seeded on these 

human stroma and tubes, vascularized or not, and will be 

maturated under dynamic culture conditions to improve stromal 

and urothelial characteristics before in situ implantation in 

rabbits. These animal implantations will pave the way to the 

first clinical trial in human’s patients. 

PERSPECTIVES 

The reconstruction by tissue engineering of a human-derived 

organ-specific autologous urethra has been an actual challenge 

due to the complexity of the specification: combining good 

mechanical properties to adequate differentiation of the 

urothelium, but it has been achieved using the self-assembly 

method, i.e. without the use of biomaterials. Several new 

challenges appear such as the use of urothelial, mesenchymal 

and endothelial cells differentiated from induced pluripotent 

stem cells derived from blood cells. It would allow circumventing 

the need to take a biopsy with potential comorbidities, but also 

to avoid the issue when facing the complete absence of specific 

cells in a given patient, or presence of inadequate cells to 

harvest [96]. Another challenge in the future years should be to 

exclude the use of serum into cell culture. Serum could not only 

induce loss of reproducibility in some experiments but also be a 

source of animal contaminants and also raise ethical concerns 

[97]. 
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