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ABSTRACT 

Gait analysis plays a crucial role in assessing human movement patterns and 

identifying potential abnormalities. Traditional methods for gait analysis involve 

complex setups, such as attaching markers and using multiple cameras, making them 

cumbersome and time-consuming. Recent advancements in artificial intelligence (AI) 

have opened up possibilities for analyzing gait using single-camera videos. However, 

existing approaches rely on ground information and lack the ability to detect gait 

events accurately. In this study, we present a novel algorithm for automatically 

detecting gait events without the need for accurate global coordinate systems. Our 

algorithm utilizes joint angles and relative distances between key points to detect gait 

cycles and events. To validate our algorithm, we participated 34 healthy male 

subjects. Three-dimensional motion capture systems were used to measure joint 

movements during walking, while a 2D camera recorded the entire measurement 

space. The gait events detected by our algorithm were compared with visually 

defined events by an expert examiner. The results demonstrated that our algorithm 

successfully detected all gait events. The comparison analysis showed an absolute 

constant error of 1.04 frames (17.4ms) for hell strike detection and 1.29 frames 

(21.5ms) for toe off detection. Furthermore, the gait cycle variables calculated from 

2D camera images using our algorithm showed no statistical difference compared to 

those measured visually using a 3D motion capture system.  

Overall, our study presents a promising algorithm for gait event detection without 

relying on ground information. By leveraging joint angles and relative distances, our 

algorithm can accurately detect gait cycles and events, enabling gait analysis from 

wild images. This research contributes to the development of AI-based gait analysis 

techniques, offering potential applications in clinical assessments and fall risk 

evaluations. Further improvements can be made to enhance the algorithm's 

performance in handling acceleration and deceleration sections during gait analysis. 

INTRODUCTION 

Gait is a natural movement of the human body to move from one place to another, 

and it utilizes various functions, any of which can affect gait [1]. Gait speed is 

affected by both functional and physiological changes [2-3] and is often used to 
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measure fall risk [3,4]. The gold standard for gait analysis is 

3D motion analysis, which involves placing infrared reflective 

markers on anatomical locations throughout the body and using 

multiple infrared cameras to measure human coordinates in 

three-dimensional space. This method is accurate, but it is 

cumbersome to attach markers and has the disadvantage of 

calibrating the three-dimensional space with multiple cameras 

[5]. To analyze gait using the three-dimensional coordinates of 

the human body, gait events must first be detected. The current 

gold standard for the automatic detection of gait events is the 

use of ground reaction forces measured by force platforms 

[6,7]. However, this method not only requires the installation of 

force platforms, but also has the disadvantage of being 

inaccurate for pathological gaits such as foot drags [7]. Many 

gait event detection algorithms using kinematic data have been 

developed to analyze gait in various situations [8-14]. 

However, these algorithms basically require ground information 

including 3D coordinates. 

Recently, there have been studies that attempted to analyze 

gait in wild videos using advanced Artificial Intelligence (AI) 

[15-19]. Most of them extract gait features based on silhouette 

to determine the gait state or perform gait recognition [16-18]. 

Bouchrika and Nixon [15] detected gait events and analyzed 

the joint angles of the gait cycle, but the camera angle had to 

be fixed and only 2D motions were analyzed. Recently, many 

artificial intelligence methods have been studied to accurately 

estimate 3D pose from 2D wild images [20-23]. Various 

approaches such as graph convolutional neural network [21], 

transformer [22], and 2.5D heatmap [23] have been studied 

for high accuracy. As a result of these studies, the accuracy of 

Mean Per Joint Position Error (MPJPE) is very high with less than 

100mm. Therefore, it is thought that gait analysis using single 

camera video is possible. However, 3D pose estimated from 

wild images has no ground information. Thus, it is difficult to 

apply the gait events detection algorithms. Therefore, in this 

study, we developed an algorithm that automatically detects 

the gait events without the ground information for the 3D pose 

data from wild images. 

METHODS 

Gait event detection algorithm 

To detect the gait events without an accurate global coordinate 

system, we developed an algorithm using only joint angles and 

relative distances between keypoints. We also designed the 

algorithm to detect gait cycles first and then detect gait events 

(Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gait cycle detection: To detect gait cycles, we used hip joint 

sagittal plane angle, inter-ankle distance, and pelvic-ankle 

distance. First, the hip joint sagittal plane angle was cross-

correlated with the cosine wave by cadence and the 

temporary cycle was selected when it showed high agreement 

(Figure 2). Second, the temporary cycle was selected when the 

distance between the ankles (inter-ankle distance) showed high 

 

Figure 1: Block diagram of gait event detection algorithm. 
(A) Gait cycle filter 1 is the cross-correlation of hip joint sagittal 
plane angle and cosine wave. (B) Gait cycle filter 2 is the cross-
correlation of distance between the ankles (inter-ankle distance) 
and cosine wave. (C) Temporary gait cycle is an algorithm that 
determines a temporary gait cycle based on the inter-ankle 
distance when gait cycle filter 1 and 2 are matched. (D) Gait 
events detection section sets the area to detect gait events based 
on the peak points of the inter-ankle distance. (E) Valid gait cycle 
check is an algorithm that recognizes a normal gait cycle when 
the pelvic-ankle distance in the vertical direction in pelvis 
orientation decreases by more than a certain value in each gait 
events detection section. (F) gait events detection is an algorithm 
that detects heel strike by searching the inter-ankle distance in 
time order in the gait events detection section and detects toe off 
by searching in reverse time order. 

 

Figure 2: First cross-correlate filter. 
(A) Target angle(θTG) is the sagittal hip joint angle. (B) θTG 

according to the gait cycle. (C) Reference angle (θREF) according 
to the gait cycle. Data Variation by the cadence. (D) Cross-
correlate coefficient of θTG and θREF over time. Positive peak to 
positive peak can be set as temp gait cycle. 
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agreement by calculating the cross-correlate with the cosine 

wave by cadence (Figure 3). When two temporary cycles 

matched, we set the temporary gait cycle to be between two 

positive peaks in the inter-ankle distance when the inter-ankle 

distance at that point showed one negative peak between the 

two positive peaks. 

 

 

 

 

 

Gait event detection: The gait events detection section was set 

from the peaks of the temporary gait cycle to the previous 

opposite direction peak. The first positive peak was 

categorized as the previous gait events detection section, the 

negative peak as the opposite gait events detection section, 

and the last positive peak as the current gait events detection 

section (Figure 4).  

 

 

In each gait events detection section, the normal gait cycle was 

judged when the pelvic-ankle distance in the vertical direction 

in pelvis orientation decreased by more than a certain distance 

(ex: 30mm) (Figure 5). 

Then, the algorithm to find the correct gait events (heel strike 

(HS) and toe off (TO)) was applied for around each HS of gait 

cycle. If the algorithm could not find the HS or TO, all gait 

events of that gait cycle was disregarded. In the algorithm, TO 

be set as the latest of the time when the amplitude of the inter-

ankle distance was 15% and the time when the slope of the 

inter-ankle distance reached 20% based on the maximum 

value. HS was set as the earliest of the time when the 

amplitude of the inter-ankle distance was 95% and slope less 

than 20% time of maximum slope for inter-ankle distance 

(Figure 6). 

 

 

 

 

 

 

 

 

 

Subjects 

Thirty-four healthy males with no history of lower limb 

disorders participated in this study (age: 20.8 ± 4.8 years, 

height: 176.4 ± 5.5 cm, weight: 74.8 ± 10.7 kg). All subjects 

provided written informed consent on a form that had been 

 

Figure 3: Second cross-correlate filter. 
(A) Target distance (DTG) is inter-ankle distance in the anterior-
posterior direction in pelvis orientation. (B) DTG according to the 
gait cycle. (C) Reference distance (DREF) according to the gait 
cycle. Data Variation by the cadence. (D) Cross-correlate 
coefficient of DTG and DREF over time. Positive peak to positive 
peak can be set as temp gait cycle. 
 

 

Figure 4: Gait events detection section. 

 

 

Figure 5: Gait cycle validation algorithm. 
(A) Vertical distance (DVT) is pelvic-ankle distance in the vertical 
direction in pelvis orientation. (B) DTG according to the gait cycle. 
The temporary gait cycle of the foot can be identified between 
positive peaks and positive peaks, and the temporary gait cycle 
of the opposite foot can be identified between negative peaks 
and negative peaks. (C). The amount of change was checked by 
the difference between the min and max of DVT within the 
temporary gait cycle, and it was decided that the difference 
should be more than a certain distance to be considered as a 
valid gait cycle. 

 

Figure 6: Gait event detection algorithm. 
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approved by the Public Institutional Review Board Designated 

by Ministry of Health and Welfare (P01-202205-01-002; 

date of registration: May 2, 2022). All data collection began 

on June 1, 2022 and ended on June 30, 2022. 

Experimental Procedure 

A 3D motion capture system (8 cameras, Prime 41, OptiTrack, 

NaturalPoint, USA) was used to measure human joint 

movements during walking. The markerset was Motive 

Software's Baseline + Hinged Toe markerset [24] and was 

acquired at 60 Hz. The system was calibrated before 

measuring gait. The 2D camera (OBSBOT Tiny, OBSBOT, 

HongKong) was positioned to capture the entire measurement 

space and recorded at 30 Hz. The camera was taken parallel 

to the ground in the side of the measurement space. Subjects 

performed 10 gait trials on a 4m walkway and 3 treadmill 

gait trials at a 4km/h speed with one minute duration. The 10 

level gait trials consisted of 2 left, 1 front-left, 1 front, 1 front-

right, 2 right, 1 back-right, 1 back, 1 back, and 1 back-left, 

based on camera view. 

Data analysis 

For verification, the gait events for 3D joint positions from 

motion capture system were defined visually by an experience 

examiner and compared it with gait events detected by the 

developed algorithm. An experience examiner defined HS 

using the vertical coordinates of the heel marker and TO using 

the vertical coordinates of the toe marker while observing the 

entire three-dimensional posture during walking. To verify the 

accuracy of the developed algorithm in detecting gait events, 

the joint coordinates measured from the 3D motion capture 

system were compared with a gold standard visually detected 

by an expert and the gait events detected by the developed 

algorithm. 3D human keypoints were estimated in SMPL24 [25] 

format using MeTRAbs [23] from 2D camera images, and the 

developed gait event detection algorithm was applied. The 2D 

camera footage was only measured during flat walking. There 

were many cases where the AI could not recognise the human 

body normally because the subject was wearing a full-body 

black suit. Due to this, only 337 gait cycles out of a total of 

1235 gait cycles were used for the comparison analysis. Since 

the 2D camera was not synchronised with the 3D motion 

capture system, cycle duration, stance phase and double 

support phase were compared using t-tests. The significance 

level for all statistics was set at 0.05. 

RESULTS 

As a result, all gait events were detected by the developed 

algorithm. Comparison between visual and the developed 

algorithm showed that the absolute constant error was 1.04 

frames, i.e., 17.4ms of error, for heel-strike detection and 1.29 

frames, i.e., 21.5ms of error, for toe-off detection. The results 

showed that all gait events detected by visually through joint 

coordinates measured by the 3D motion capture system were 

also detected by the developed algorithm. The absolute 

constant error of the visual and developed algorithms was 

1.30 frames for HS and 1.46 frames for TO in level gait, and 

0.73 frames for HS and 0.98 frames for TO in treadmill gait 

(Table 1). In level gait, HS and TO were detected a total of 

1235 times each, with 95.5% of HS and 97.6% of TO events 

having a frame difference of 3 or less between visual and the 

developed algorithm (Figure 7). In treadmill gait, HS and TO 

were detected a total of 3023 times, with 99.2% HS and 

99.2% TO for events with a frame difference of 3 or less 

between visual and the developed algorithm (Figure 8).  

 

 

 

Cycle duration, stance phase and double support phase 

calculated from human keypoints in 2D camera images were 

1.16s, 69.7% and 20.0%, respectively, which were not 

statistically different from 1.16s, 69.8% and 19.9% measured 

visually in 3D motion capture system. 

 

 

Figure 7: Histogram of frame difference for visual and algorithm 
detected gait events from level gait. (A)HS (B) TO. 

 

 

Figure 8: Histogram of frame difference for visual and algorithm 
detected gait events from treadmill gait. (A)HS (B) TO. 
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 Frame MS 

Total 
HS 1.04 17.4 

TO 1.29 21.5 

Level gait 
HS 1.30 21.7 

TO 1.46 24.3 

Treadmill gait 
HS 0.73 12.1 

TO 0.98 16.4 

DISCUSSION 

In this study, we aimed to develop an algorithm that can 

analyze the gait cycle in the absence of a three-dimensional 

coordinate system for the ground. The results showed that the 

average error was accurate to within 2 frames for level gait 

and 1 frame for treadmill gait. In this study, the gait cycle 

algorithm showed a large error due to a lot of 

acceleration/deceleration sections, including start and stop 

within a 4-meter walkway. In future study, it is necessary to 

improve the algorithm to recognize acceleration/deceleration 

sections and analyze the gait cycle more accurately. 

All parameters used in the developed algorithm are joint 

angles, anterior-posterior and vertical distances based on the 

pelvic coordinate system but those related with the three-

dimensional coordinate system with respect to the ground are 

not used. First, the hip joint angle was used to check for 

periodicity. DeAsha et al. [14] detected HS as the peak of the 

contralateral foot hip joint angle, but it showed poor 

performance because it failed to consider pathological gait 

[26]. In this study, hip joint angle was only used to check 

periodicity by considering pathological gait. Inter-ankle 

distance in the anterior-posterior directions was used for 

periodicity check and detailed detection of HS and TO. Since 

the algorithm was designed to analyze data without 

information about the ground and the direction of walking, the 

direction of walking was assumed based on the coordinate 

system of the pelvis. This resulted in the acquisition of noisy 

signals at the exact heading distance, so it was difficult to 

directly apply the foot coordinate peak detection [8,13], 

velocity peak detection [10,12], and velocity threshold [9] of 

existing algorithms. We needed an algorithm that is robust to 

noise, so we configured two conditions: amplitude of foot 

distance and slope change. The vertical movement of the foot 

was assumed to be the pelvic-ankle distance in the vertical 

pelvic coordinate system and used to determine the validity of 

the gait cycle. 

In both level gait and treadmill gait, TOs were characterized 

by an overall delay of 1-2 frames in detection (Figure 6, 7). 

This was likely caused by setting the amplitude condition for 

TO detection to 15%. We set a high threshold of 15% to 

account for pelvic rotation, propulsion, and changes in 

pathological gait, but it did not work well in a normal gait 

environment. It is necessary to find the optimal threshold by 

applying it to pathological gait in the future. 

We applied the gait cycle detection algorithm by extracting AI 

3D human key points from 2D videos taken with a 3D motion 

capture system, and confirmed that there was no significant 

statistical difference when comparing the results with the motion 

capture results (Table 2). Even though only 337 out of 1235 

gait cycles (27%) were successfully analyzed, and the 

analyzed data contained a lot of noise due to large 

deviations, we were able to confirm the possibility of gait 

analysis in wild images, and it is expected that more accurate 

analysis will be possible if AI human pose estimation is further 

developed in the future. 

 

 

 
Condition 

P 

3D Motion Capture 2D Camera + AI 

Cycle duration (s) 1.16 (0.006) 11.6 (0.007) 0.16 

Stance phase (%) 69.9 (2.65) 69.8(16.47) 0.34 

Double support phase 

(%) 
19.9 (3.80) 20.2 (17.05) 0.12 
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