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ABSTRACT 

Today it is known that the enhanced brain opioid system activity represent the major 

neurochemical variation occurring in stress conditions. Moreover, it has been shown 

that a chronic opioid hyperactivation may suppress the anticancer immunity, and 

promote cancer development. On the contrary, the influence of stress on the 

autoimmune processes is more complex, since the mu-opioid agonists may stimulate 

both TGF-beta and IL-17 secretion, which respectively may counteract or promote the 

onset of the autoimmune diseases. The in vivo preferential effects of opioids on TGF-

beta or IL-17 secretions could depend on the functional status of brain cannabinoid 

system, which has been found to inhibit IL-17 secretion. Then, the neurochemical 

corrections of the major stress-related neuroendocrine and cytokine alterations could 

constitute a new physiological approach in the treatment of stress-related disorders. 

INTRODUCTION 

It is known that stress may predispose to both cancer and autoimmune diseases [1-3]. 

Then, the physiopathological question is to establish whether the promoting influence 

of stress on the development both cancer and autoimmune diseases, which are 

characterized by the opposite immune reactivity, may depend on the type of stress or 

on the different immunobiological response. Moreover, despite the complexity of its 

mechanisms, it has been proven that stress is mainly characterized by en enhanced 

brain opioid system activity, since it has been demonstrated that the concomitant 

administration of an opioid antagonist, such as naloxone o naltrexone (NTX), may 

abrogate stress-induced immune alterations [4]. Moreover, stress has appeared to be 

characterized by an enhanced secretion of vasopressin, the so called Antidiuretic 

Hormone (ADH), by the neurohypophysis, as well as by an increased CRH production 

at hypothalamic level, with a following activation of the Hypothalamic-Pituitary-

Adrenal (HPA) axis and the sympathetic system [5,6]. The mu-opioid agonists, such as 

beta-endorphin and morphine, have been proven to induce immunosuppression by 

inhibiting TH1 lymphocyte and dendritic cell functions and by stimulating regulatory T 

lymphocyte (T reg) system [7,8], with a consequent decreased secretion of IL-2 and IL-

12 in association with an enhanced production of TGF-beta . Being IL-2 and IL-12 the 

main antitumor cytokines in humans [9,10], and TGF-beta the main endogenous 
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immunosuppressive factor [11], these evidences may explain 

their promoting action of stress on tumor development and 

progression.  

Cancer-stress relationships 

Today it is known that the antitumor immunity is mainly 

stimulated by IL-2 and IL-12 [9,10], whereas it is inhibited by 

the anti-inflammatory cytokines TGF-beta and IL-10 [11], as 

well as by most inflammatory cytokines, including IL-6, IL-1beta 

and TNF-alpha [12]. TGF-beta and IL-10 have appeared top 

counteract the antitumor immunity by inhibiting IL-2 secretion 

from TH1 lymphocytes and that of IL-12 from the dendritic cells 

[11], while IL-6 may inhibit IL-2-induced transformation of NK 

cells into LAK cells [9]. NK cells are not active against fresh 

human cancer cells, since they have been shown to exert their 

cytotoxic acivity only against artificial laboratory tumor cell 

lines. On the contrary, LAK cells are able to destroy fresh 

human cancer cells collected from the same cancer patients [9], 

by representing the main cells responsible for antigen- 

independent anticancer cytotoxicity. IL-2 plays an anticancer 

action by stimulating LAK cell generation [9], while IL-12 exerts 

its anticancer activity by promoting IL-2 secretion [10], and by 

inhibiting TGF-beta release [13]. Therefore, stress-related 

promotion of tumor development may be simply explained as 

a consequence of a chronic suppression of the antitumor 

immunity induced by the enhanced brain opioid activity 

occurring during stress conditions [4]. The inhibition of IL-2 [7,8] 

and IL-12 scretions induced by the mu-opioid agonists in 

association with a stimulation of TGF-beta and IL-10 release is 

already sufficient to explain stress-induced immunosuppression 

of the anticancer immmunity [4-8].  

Autoimmunity-stress relationships 

According to the more recent immune discoveries, at present it 

is known that the autoimmune diseases are mainly due to an 

enhanced production of IL-17 from TH17 lymphocytes [14]. IL-

17 promotes the develpment of autoimmune processes by 

namely inhibiting T reg cell functions, with a following 

diminished production of the immunosuppressive factor TGF-

beta [15]. Moreover, IL-17 secretion is also induced by IL-1 

beta, and reciprocally it may stimulate IL-1beta and IL-6 

release [15], with a following activation of the macrophage 

system. The influence of stress on the development of 

autoimmune processes is more complex to be explained, 

because of the controversial effects of the mu-opioid agonists 

on IL-17 and TGF-beta production. In fact, the mu-opioid 

agonists have appeared to stimulate the secretion of both TGF-

beta and IL-17 [16]. The preferential stimulatory effects of mu-

opioid agonists on TGF-beta or on IL-17 release may explain 

at least in part the mechanisms by which stress may either 

stimulate or counteract the occurrence of autoimmune processes. 

In more detail, a preferential stimulatory action of mu-opioid 

agonists on IL-17 secretion may predispose to the development 

of autoimmune mechanisms, because of the inhibitory effect of 

IL-17 on TGF-beta secretion [15], whereas a preferential 

stimulation of TGF-beta secretion could protect against the 

onset of autoimmune processes [17]. The preferential 

stimulatory effect of the mu-opioid agonists on IL-17 or TGF-

beta secretion could depend at least in part on the functional 

status of the other fundamental brain neuromodulatory system, 

the brain cannabinoid system [18], since the endogenous 

cannabinoid agonists, including arachidonyl-ethanol-amide and 

2-arachidonyl-glycerol, have been proven to inhibit IL-17 

secretion [18,19], whereas they have no relevant effect on that 

of TGF-beta. Then, the influence of stress-related enhanced 

brain opioid tone on the autoimmune dynamics could depend 

on the concomitant functional status of brain cannabinoid 

system. In the presence of a normal cannabinoid function, 

stress-related effects of the opioid system could preferentially 

allow an enhanced TGF-beta secretion, because of the 

inhibitory effect of cannabinoids on IL-17 release, whereas in 

the presence of a concomitant reduced brain cannabinoid 

function, the enhanced opioid activity would preferentially 

allow an enhanced release of IL-17 and promote the onset of 

autoimmune processes. A diminished brain cannabinoid tone 

has been demonstrated in the presence of anaedonia [18], 

which consists of a diminished pleasure perception. On the 

contrary, irrespectively of the preferential effect of stress on 

TGF-beta or IL-17 secretions, stress constantly represents a 

promoting factor for tumor development, since both TGF-beta 

and IL-17 may exert stimulatory effects on tumor onset and 

growth. In fact, TGF-beta may promote tumor growth by 

suppressing the antitumor activity, while IL-17 may exert a 

protumoral action by directly stimulating cancer cell 

proliferation [20].  
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HOW TO INVESTIGATE STRESS-INDUCED IMMUNE 

ALTERATIONS? 

According to the recent advances in the knowldedge of the 

immune physiology, the main target of stress is not the 

endocrine system, but the immune system, since the biological 

variations occurring in stress conditions are fundamentally the 

consequence of an altered neurondocrine control of the immune 

functions. Then, the question is how to clinically analyze the 

immune status of patients in a synthetic and less expensive 

manner, by taking into consideration that few clinical 

examinations are not sufficient, and that many laboratory 

analyses risk to allow controversial results among the great 

number of possibile immune and neurondocrine parameters. At 

present, an adequate clinical investigation of the interactions 

occurring between immune and neuroendocrine systems either 

in basal, or stress conditions, would have at least to include the 

evaluation of the circadian rhythm of both cortisol and the 

pineal hormone melatonin (MLT), the Lymphocyte-to-Monocyte 

Ratio (LMR), the TH1-to-T reg ratio (TH1/T reg), and blood 

levels of IL-6, IL-17, IL-2, IL-12, and TGF-beta. This synthetic 

proposal of laboratory examinations is justified by the fact 

that IL-1 beta, TNF-alpha, and IL-8 tend to present the same 

behavior than that of IL-6, gamma-IFN secretion is related to 

that of IL-2, and IL-10 is generally released in association with 

IL-10.  

Stress-Induced Neuroendorine and Cardiac Parameters 

In normal conditions, cortisol levels are higher during the 

morning and lower in the afternoon and evening, whereas the 

pineal hormone MLT is higher during the dark period of the 

day and lower during the light phase, with a following 

generation of a light/dark circadian rhythm [21]. The 

progressive loss of the light/dark MLT rhythm has been 

observed in most human systemic diseases, including advanced 

cancer, autoimmune diseases, cardiovascular disorders, and 

neurodegenerative pathologies [21]. The lack of cortisol 

decline during the afternoon and the absence of MLT increase 

during the night may be considered as a sign of 

desynchronization, which consists of the loss of the connections 

to the environmental conditions and the universal energetic 

variations. Stress is also characterized by changes in the 

neurohypophyseal function, with an enhanced secretion of ADH, 

and a diminished release of oxytocin (OT). Moreover, both 

ADH and OT have been shown to influence the cardiac 

endocrine activity, since ADH has appeared to stimulate the 

secretion of endothelin-1 (ET-1), which is also released from the 

endothelial cells of the cardiovascular system [22]. On the 

contrary, OT has appeared to stimulate the release of Atrial 

Natriuretic Peptide (ANP) [22,23]. Because of the anti-

inflammatory, antitumor, immunostimulatory, anti-angiogenic, 

and cardioprotective activities of ANP [24], and in an opposite 

way the inflammatory, pro-tumoral, immunosuppressive and 

angiogenic actions of ET-1 [25], as well as its involvement in the 

induction of heart hypertrophy, the influence of stress on the 

cardiac endocrine activity would play a fundamental role to 

explain the toxic effect of stress on the human biology. Then, 

the evaluation of ADH-to-OT ratio, as well as of ANP-to-ET-1 

could constitute an important clinical parameter to quantity the 

intensity of the influence of stress in each single patient. Finally, 

it has to be remarked that the functionless of brain opioid 

system cannot be adequately evaluated without taking into 

consideration its connection with brain cannabinoid system 

[18,19], was main neuroimmune activity would consist of the 

inhibition of IL-17 secretions and that of the other main 

inflammatory cytokines, including IL-6 and TNF-alpha. The 

function of the endogenous cannabinoid system may be 

clinically investigated by the simple measurement of the Fatty 

Acid Amide Hydrolase (FAAH), the enzyme involved in 

cannabinoid metabolism and destruction [18,19]. Then, the 

evidence of abnormally high blood levels of FAAH would 

reflect an endogenous cannabinoid deficiency [26], which has 

been proven to characterize most human systemic diseases, 

including metastatic neoplasms and cardiovascular diseases. 

Stress-induced immune parameters 

Actually, an adequate clinical immune evaluation would require 

the determination of the main lymphocyte subsets, the main 

inflammatory and anti-inflammatory cytokines, and the main 

immunosuppressive protumoral and anticancer 

immunostimulatory cytokines. In any case, since the immune 

functionless is substantially the end-result of the interactions 

occurring between lymphocyte and monocyte-macrophage 

systems, the simple Lymphocyte-to-Monocyte Ratio (LMR) has 

appeared to reflect the whole immune status, since the 

evidence of abnormally low values of LMR has been proven to 

predict a poor prognosis in both cancer and cardiac ischemic 
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disease [27,28], and reflect an enhanced T reg lymphocyte 

activity [29]. Moreover, despite the complexity of lymphocyte 

subpopulations, the function of T lymphocyte system is 

fundamentally the end-result of the interactions between TH1 

and T reg cells, corresponding to TH1/T reg ratio [30], since 

they represent the main cells responsible for the 

immunoactivation or immunosuppression, respectively. Finally, 

as far as cytokine measurement is concerned, it could be 

sufficient to evaluate blood levels of IL-6 and IL-17, the main 

cytokines respectively responsible for macrophage or TH17-

dependent inflammation, those of TGF-beta as the main 

immunosuppressive agent, and those of IL-2 and IL-12, which 

are the main antitumor cytokines in humans [9,10], and may 

exert both inflammatory and pro-inflammatory effects, 

depending on the different biological conditions. Then, to 

evaluate the immune status of patients from a clinical point of 

view, in a very synthetic way it could be sufficient the simple 

detection of LMR values, which may be associated to that of 

TH1/T reg ratio to better define the status of T reg cell system. 

For a more complete clinical investigation, it could be sufficient 

the evaluation of IL-6, IL-17, TGF-beta, IL-2 and IL-12 blood 

concentrations. 

Influence of stress on neuroimmune interactions 

The main connections between neuroendocrine and immune 

systems are consisting of the stimulatory effect of the 

inflammatory cytokines, including IL-6 and TNF-alpha, on the 

HPA axis, with a following increase in cortisol blood levels and 

a possible progressive loss of its circadian secretion, and on the 

other side of the stimulatory action of IL-2 and IL-12 on brain 

cannabinoid system-pineal functional axis [31], since IL-12 has 

been shown to inhibit FAAH activity [32], with a following 

increase in brain cannabinoid tone, and low-dose IL-2 has 

appeared to restablish the physiological light/dark rhythm of 

the pineal hormone MLT in cancer patients [33]. 

POSSIBLE NEW THERAPEUTIC STRATEGIES TO CONTROL 

STRESS-INDUCED IMMUNE ALTERATIONS 

The pineal hormone MLT has appeared to constitute one of the 

main anti-stress endogenous factors [34], since it may inhibit the 

activation of the sympathetic system, modulate the HPA axis, 

and regulate brain opioid system through its connection with 

brain cannabinoid system [35]. MLT has also appeared to 

counteract stress-induced immunosuppression, and exert an 

anti-inflammatory function [36]. Finally, the control by MLT of 

anxiety-related stress may be furtherly amplified by a 

concomitant administration of cannabidiol (CBD), the anti-

inflammatory non-psychotropic agent of Cannabis [18,19,37]. 

Obvioulsy, being the hyper-activity of brain mu-opioid system 

the main stress-related neurochemical variation, the most simple 

strategy to counteract stress-related increased brain opioid 

activity would have to consist of the block of the opioid system 

through the administration of a long-acting mu-opioid 

antagonist, such as NTX, as already observed in experimental 

conditions [4]. In fact, NTX has been proven to reduces T reg 

cell system activity [38]. At present, however, the results with 

NTX in humans are still controversial, and no defined conclusion 

may be proposed, in particular when it is administered in 

association with cannabinoid agents, since some effects induced 

by cannabinoids are mediated by the same opioid system 

[18,19], which could be abrogated by the concomitant 

administration of an opioid antagonist. Another strategy to 

counteract stress-related hyperactivation of brain opiod system 

and the same action of stress, namely on the immune system 

and on the cardiac function, may consist of OT administration, 

since OT has been shown to be inhibited by the mu-

opioidagonists [39]. Opioid-induced inhibition of OT secretion 

occurring during stress may explain at least in part some stress-

related psychological profiles, including anxiety, diminished 

perception of pleasure, and a decline in the cognitive functions. 

This statement is justified by the fact that OT has appeared to 

play a fundamental role in the modulation of anxiety, mood, 

social recognition, affective relationships, sexual behavior, and 

cognitive function, because of its stimulatory role on mirror 

neuron system, as well as cannabinoids and the pineal hormone 

MLT [40].  

CONCLUSION 

The recent advances in the area of Psycho-Neuro-Endocrino-

Immunology (PNEI) have allowed the possibility to control the 

negative effects of stress on both psychospiritual life and 

immune system through a physiological -neurochemical strategy 

by simply correcting the main immune and neuroendocrine 

alterations occurring under stress conditions, when they become 

excessive and detrimental, in an attempt to establish the 

neuroimmunochemical status of health. 
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