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ABSTRACT 

Purpose: To compare 4 methods of quantitative measurements of the radiological 

response after irradiation of skull base meningiomas. 

Methods and Materials: Radiological and clinical data from 35 patients treated 

between January 2009and 2014were reviewed. Most of the lesions were localized in 

the cavernous sinus (60%). Patients were treated either with fractionated stereotactic 

radiation therapy (54%) or helicoïdal tomotherapy (46%). The median delivered 

dose was 54.1 Gy (54 – 60). Median follow-up was 44 months (range: 24 – 77). The 

four methods of radiological measurements were, i/ volumes measured by serial 

delineation with dedicated software (software-Tumor Volume (TV)), ii/ volume 

calculations (calculated-TV) from the values of three diameters and iii/ measurements 

of the Largest Tumor Diameter (LTD), iv/ the cross product of two largest orthogonal 

diameters (CP).The evaluation of the overall radiological response (ORR) was based 

on a comparison between the quantitative measurements performed at baseline with 

the latest available for each patient. Among 206 MRI of follow-up of the 35 patients, 

151 were suitable to reach the criteria required for this study.  

Results: For the four radiological measurement techniques, there was a significant 

decrease between the baseline and the last follow-up values (p < 0.05). Partial tumor 

response for software-TV, calculated-TV, LTD and CP were 94%, 94%, 6%, 3%, 

respectively. ORR was much more marked on volumetric analyses than on LTD and CP 

measurements, software-ORR = -29.4% (range: -83.9 to 2); calculated-ORR = -

30.3% (range: -60.1 to 8.1), LTD-ORR = -8.1 % (range: -35.4 to 2) and CP-ORR = -

15.8 (range: -55.5 to 10.3), respectively. Analysis of tumor kinetics according to the 

four methods showed a gradual and significant decrease in tumor size from 6 months 

to 60 months after irradiation. 

Conclusions: Radiological follow-up after irradiation of meningiomas should be 

based on a computerized volumetric measurement. 
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INTRODUCTION 

The main objective of skull base meningioma treatments is to 

reach local control combined with neurological preservation. 

[1-8].Surgery with radical excision remains the reference 

treatment of meningiomas [9].However, for base of the skull 

meningiomas, surgery leads to an unsuitable morbidity rate 

ranging from 10 to 66.8% [4,5,10,11] and a non-acceptable 

mortality rate reaching up to 8.3% [5]. Even with modern 

surgical techniques and by high level surgery teams, Gross 

Tumoral Removal (GTR) of the base of the skull meningioma 

was gradually abandoned in favor of the Subtotal Tumoral 

Resection (STR) that results in less morbidity [10,11]. However, 

STR increases the risk of recurrence compared to GTR [4,2-

14].Then, radiotherapy has been progressively more and more 

used and is now a well-established, safe and effective 

treatment both in exclusive and adjuvant treatment [15-27].The 

evaluation of radiotherapy effectiveness is generally measured 

on the clinical response of the neurological meningioma-

induced impairments and the ability to obtain a radiological 

shrinking of the tumor. Published clinical efficacy rates varied 

from 20 to 67% [15,17,21-23,25,26,28]. 

The use of radiological imaging is fundamental to evaluate the 

efficacy of anti-tumor therapies and several methods to 

measure the tumor response has been published [29,30]. For 

meningiomas, depending on the chosen evaluation criteria, the 

radiological control can reach 95%, because, in these slow 

growing tumors, stabilization was often considered positively 

[25,28,31-34]. The radiological response is rarely detailed; 

there was often too much heterogeneity of the criteria to draw 

consistent conclusions [15-17,20,21,23,25,27,33-37]. Most of 

series reported clinic-radiological discordance between clinical 

response and tumor shrinkage [23,27,33]. There are no 

standardized criteria to evaluate the radiological response 

after irradiation of meningiomas.All criteria used in publication 

has been disputed. RECIST criteria could not be apply to 

meningiomas because of their presumed radio resistant [2,3]. 

2D method using two orthogonal diameters revealed no 

implement compared to the previous evaluation methods 

[30,38,39]; a reduction of the largest diameter of at least 

2mm is often unsuitable for complex shape lesions[2]. Different 

levels of reduction have also been proposed as radiological 

response criteria [27,34]. Some studies have reported that 

volumetric analyzes were more reliable than diameter 

measurements [38,40-42].The first method consists of 

computerized measurement of the Tumor Volume (TV) with 

dedicated radiotherapy software after delineation of the 

lesion on follow-up serial MRIs, and the second consists in 

calculating it from measurements of the three diameters. 

However, the latter is more disputable because of its 

approximation by considering the lesions spherical or ellipsoid 

[1,2,42-44]. This study was performed to analyze, by four 

measurement methods, the radiological response and tumor 

kinetic after irradiation of base of skull meningiomas. A 

correlation between these four radiological responses was also 

investigated. 

MATERIAL AND METHODS 

Patients characteristics 

Between January 2009 and January 2014, 35 patients were 

treated with radiotherapy for skull base meningioma. 

Radiological and clinical data were retrospectively reviewed 

to perform a quantitative and kinetic follow-up of radiological 

response. Most of the patients were women (94%) and the 

median average age was 59 years (range: 43 – 81). Most of 

the lesions were located in the cavernous sinus (60%). 

Patients were treated either with Normofractionated 

Stereotactic Radiation Therapy (NFSRT) (54.3%) and 

Helicoidal Tomotherapy (HT) (45.7%). The prescribed dose 

was 54 Gy in 30 fractions of 1.8 Gy except for one patient 

with histological confirmed bone invasion who received 60 Gy 

in 30 fractions of 2 Gy. 

Follow-up 

The median follow-up was 44 months (range: 24-77). The 

patients were reviewed at 6 months from radiotherapy 

completion and then every year or every two years with a 

clinical examination and an MRI. 

Follow-up MRIs could be performed in the university or 

equivalent hospitals, following a relevant procedure describing 

the minimum required sequences or in others hospital with a less 

optimized set of images. All the MRIs were retrieved and 

transferred on a local Picture Archiving and Communication 

System (PACS). In total, 206 MRIs for the 35 patients were 

available on the PACS for the period from baseline to the 

longest follow-up. 
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Radiological evaluations 

Four methods of radiological follow-up based on quantitative 

measurements were tested and compared. Radiological 

response has been evaluated on variations of i/ volumes 

measured by serial delineation with dedicated software 

(software-TV), ii/ volume calculations (calculated-TV) from the 

values of three diameters and iii/ measurements of the Largest 

Tumor Diameter (LTD), iv/ the cross product of two largest 

orthogonal diameters (CP).The evaluation of the Overall 

Radiological Response (ORR) was based on a comparison 

between the quantitative measurements performed at baseline 

with the latest available for each patient and with each follow-

up method. 

 

 

  Software-TV
$
 

Calculated-
TV

$
 

2D-CP* LTD** 

Complete 
Response (CR) 

Disappearing Disappearing Disappearing Disappearing 

Partial Tumor 
Response 

(PTR) 
> 5% of shrinkage 

> 5% of 
shrinkage 

> 50% of 
shrinkage 

>30% of 
shrinkage 

or 2 mm 
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£
 

Stable Tumor 
(ST) 

Not PTR nor PT 
Not PTR nor 

PT 
Not PTR nor 

PT 
Not PTR nor 

PT 

Progressive 
Tumor (PT) 

> 5% of increase 
> 5% of 
increase 

> 25% of 
increase 

> 20% of 
increase 

2D-CP: 2D Cross Product; LTD: Largest Tumor Diameter; TV: 
Tumor Volume 
$: Arbitrary current study evaluation 
*: Base on WHO guidelines 
**: According to RECIST 
£: not used for kinetic evolution 
 

To allow an estimation of the TV with a risk of error 

less than 10%, with the available software, a minimum of 5 

slices was required [42]. When MRIs were not adapted to this 

TV measurement, the software either could not perform it, 

either the volume obtained was unreliable; indeed, these MRIs 

were not considered for the volumetric analysis. Furthermore, 

usable MRIs should include the axial sequences T1 gado MPR 

with constant and small slice thickness (maximum 5 mm) and 

without gap. Among the 206 performed MRIs, 151 replied to 

these criteria; this represents 4.3 MRIs per patient (1-6) 

To perform an analysis of tumor kinetics, follow-up checkpoints 

were defined at 6 months from the end of radiotherapy and 

then every 12 months thereafter up to a limit of 60 months. MRI 

available at 6, 12, 24, 36, 48 and 60 months after 

radiotherapy completion were, respectively 17, 18, 27, 26, 

16and 9. Radiological results were systematically compared 

with those of the baseline. The ORR and tumor kinetic were 

calculated in absolute and relative values. Thresholds of 

complete response, Partial Tumor Response (PTR), Stable Tumor 

(ST) and Tumor Progression (TP) for each method of 

measurements are summarized in (Table 1). 

Volumetric measurements (Software-TV) 

This method was considered as the reference method of 

radiological follow-up in this study [2,3,45-49]. All the MRIs have 

been transferred from the PACS to Artiview delineation software 

(Aquilab®, Loos, France). The enhancing tumor volume on T1 3D 

MPR sequence was delineated on each slice of all MRIs by the 

same operator (YB). The TV was determined by the software 

considering the area delineated on each slice and the slices 

thickness [42] (Annex 1).  

Although some authors used thresholds from 10 to 20% for PTR, 

we assumed that a threshold at 5% of the baseline tumor volume 

is more relevant because we supposed that a very small shrinkage 

could be enough to obtain a clinical improvement of the initial 

symptoms. In contrast, Tumor Progression (TP) was considered in 

case of increased > 5% of the baseline volume for the same 

reason i.e. a small increase should sufficient to provoke clinical 

symptom. 

Calculation of volumes (Calculated-TV) 

Formulas were those to calculate the ellipsoid and spherical forms 

[1] (Annex 1). The three diameters were measured on each initial 

MRI and on each follow up MRI for all patients. The tumor length 

and width were measured on the transverse plan on the same slice 

to ensure a minimum of reproducibility of the measure. The height 

was measured either on the sagittal sections or on the coronal 

sections on the initial MRI. Thereafter, on follow-up MRI, the 

diameters were always measured on the same sections as on the 

initial MRI for each patient. 

Variation of 2D Cross Product (CP) measure 

This method used the cross product of the two largest orthogonal 

diameters. CR, PTR, ST, PT criteria are in (Table 2) 

Variation of the Largest Tumor Diameter (LTD) 

We used the RECIST criteria to measure the largest tumor 

diameter [30,39] 

As already used, we also considered PTR for a 2 mm decrease of 

the LTD [24,50]. A monitoring of tumor kinetics based on variations 

of the LTD was also carried out and compared with the volumetric 

analyzes. 

Table 1: Thresholds of response according to the 

measurements methods. 
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 Significant difference between baseline and final measurements: p < 0.05 

 

 

 

 

 

 

lues Software TV Calculated TV 
CP of orthogonal Largest tumoral 

diameters diameter 
Baseline median (min - max) 9.6 ml (0.3 - 36.6) 21 ml (0.6 - 67.4) 11.4 cm² (0.7 - 34.2) 44 mm (12 - 74) 

Last follow-up median (min - max) 6.8 ml* (0.1 - 26.5) 14.2 ml* (0.5 - 53) 9.3 cm²* (0.6 - 23) 40 mm* (12 - 65) 

Absolutemedianchange (min - max) -3 ml (-31 to 0) -4.5 ml (-40.5 to 1.3) -1.8 cm² (-16.3 to 0.6) -4 mm (-18 to 1) 

Relative medianchange (%) (min - 
max) 

-29.4 (-83.9 - 2) -30.3 (-60.1 - 8.1) -15.8 (-55.5 to 10.3) -8.1 (-35.4 to 3.2) 

Table 2: Overall Radiological Response (ORR). 

 

C: Cross product of orthogonal diameter kinetic D: Largest tumor diameter kinetic 

B: Calculated-TV kinetic A: Software-TV kinetic 

Figure 1: kinetic of meningioma according to different measurements methods. 
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Statistical analysis 

Comparison between baseline software-TV, calculated-TV, CP 

and LTD was done with a Man Whitney test. The measurements 

collected at each follow-up checkpoint were compared to the 

baseline values also with a Wilcoxon test for each radiological 

monitoring technique. The ORR was evaluated with a Wilcoxon 

test between initial and final tumor volumes and size. The 

results were considered significant if p<0.05. Correlation 

between baseline and ORR was expressed with the 

Spearman’s rho coefficient. 

RESULTS 

For the 35 patients of the current series, the last available 

radiological reports concluded to 4 PTR and 31 ST. However, it 

was only qualitative descriptions by the radiologist, there were 

no quantitative tumor measures available. Furthermore, most of 

the comparisons were performed between the two last MRIs. 

Baseline measurements 

Except for the comparison between the baseline software-TV 

and the baseline CP (p = 0.6), the comparison of each group 

baseline measures was significantly different (p < 0.05). The 

baseline Calculated-TV was more than 2-fold elevated than 

Software-TV respectively 21 mL (range: 0.6-67.4) versus 9.6 

mL (range: 0.3-36.6). 

Overall Radiological Response (ORR) 

The ORRs are summarized in the (Table 2). 

Software-TV: PTR was observed in 33 patients (94%) and ST 

in two patients. Software-TV increased in less than 1% for one 

patient and 2% for the second one. Baseline and at last 

follow-up median software-TV were, respectively 9.6 mL 

(range: 0.3 – 36.6) and 6.8 mL (range: 0.1 – 26.5). The 

difference between the two volumes was statistically significant 

(p<0.05) with mean relative and absolute reductions of-29.4% 

(range: -83.9 to2) and -3 mL (range:-31 to 0), respectively (p 

< 0.05), (Table 2). 

Calculated-TV: PTR was observed in 33 patients (94%) and ST 

and TP in two patients. The ST and TP represented respectively 

a 4.7 and 8.1% increase of the volume. Baseline and follow-up 

median calculated-TV were, respectively 21 mL (range: 0.6-

67.4) and 14.2 mL (range: 0.5-53). The difference was 

statistically significant (p < 0.05) with median relative and 

absolute calculated-TV reductions, respectively, of 30.3% 

(range: -60.1 - 8.1) and -4.5 mL (range: -40.5-8.9).  

Baseline calculated-TV was significantly higher than baseline 

software-TV (p<0.05). 

2D Cross product (2D-CP): PTR according to the WHO 

criterion was observed in 1 patient (3%), ST in 34 patients 

(97%). The median baseline and last follow-up 2D-CP were 

11.4 cm² (range: 0.7 – 34.2) and 9.3 mm (range: 0.6 – 23), 

respectively. The difference was statistically significant (p < 

0.05) with a median relative and absolute, respectively, of -

15.8% (range: -55.5 - 10.3) and -1.8 cm² (range: -16.3 –0.6). 

Largest Tumor Diameter (LTD): PTR according to the RECIST 

criterion was observed in 2 patients (6%), ST in 33 patients 

(94%). The median baseline and last follow-up LTD were 44 

mm (range: 12-74) and 40 mm (range: 12-65), respectively. 

The difference was statistically significant (p < 0.05) with a 

median relative and absolute, respectively, of -8.1% (range: -

35.4 - 8.5) and -4 mm (range: -18 - 1). 

A decrease of at least 2mm was found in 23 patients (65.7%).  

Tumor kinetic 

With the four radiological monitoring techniques, there was a 

continuous and significant decrease in volume and size of 

tumors from 6 to 60 months (Figure 1). 

Software-TV: Six-, 12-, 24-, 36-, 48- and 60- months mean 

absolute reduction of software-TV were -1.03ml (SD 1.05), -

2.3 ml (SD 1.8), -2.6 ml (SD 2.5), -3.9 ml (SD 5.1), -5.2 ml (SD 

6.3) and -7.3 ml (SD 9.2), respectively. At each time, 

difference from baseline was statistically significant (p < 0.05). 

Figure 1A represents software-TV kinetics after irradiation.  

Calculated-TV: Six-, 12-, 24-, 36-, 48- and 60- months mean 

absolute reduction of calculated-TV were -1.5 ml(SD 2.2), -4.2 

ml (SD 4.5), -4.1 ml (SD 4.8), -6.8 ml(SD 7.2), -9.9 ml(SD 8.1 

and, -13 ml(SD 12.7),respectively. At each time, difference 

from baseline was statistically significant (p < 0.05). At each 

time, difference from baseline was statistically significant (p < 

0.05).Figure 1B represents calculated-TV kinetics after 

irradiation 

2D Cross product (2D-CP): Six-, 12-, 24-, 36-, 48- and 60- 

months mean absolute reduction of 2D-CP were -0.6 cm² (SD 

1.20), -1.5cm² (SD 1.7), -1.9cm² (SD 2.5), -2.9cm² (SD 3.6), -

3.8cm² (SD 4.4) and, -5.2 cm² (SD 5), respectively. At each 
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time, difference from baseline was statistically significant (p < 

0.05). Figure 1C represents 2D-CP kinetics after irradiation. 

Larger tumor diameter (LTD): Six-, 12-, 24-, 36-, 48- and 60- 

months mean absolute reduction of the largest diameter 

were0.65 mm (SD 1.06), -2.3 mm (SD 2), -2.9 mm (SD 3.7), -

3.8 mm (SD 4.3), -5.6 mm (SD 5.2)and, -5.4 mm (SD 3.9), 

respectively. At each time, difference from baseline was 

statistically significant (p < 0.05). Figure 1D represents LTD 

kinetics after irradiation.  

DISCUSSION 

Although clinical response rate was often high and radiological 

evaluation considered very satisfying, most of series reported 

clinic-radiological discordance between clinical response and 

tumor shrinkage [23,27,33]. Hypotheses to explain clinical 

improvement by other phenomena than tumor shrinkage has 

been proposed [16,27]. This clinic-radiological dissociation 

may reflect an underestimation of the tumor reduction and its 

impact on clinical efficacy. This hypothesis is also supported by 

the fact that, in the few studies that performed volumetric 

follow-up of meningiomas, tumor reduction rates are much 

higher than in studies that reported a radiological response 

simply based on a radiological description of lesions or 

measurements of the larger diameter, respectively 33.2% to 

100% [1,2,10,45-49,51] versus 3.6% to 58% [15-17,21,25-

27,31-37,52,53]. Then, it is essential to evaluate quantitatively 

the efficacy of a radiation therapy [45]. Radiological 

evaluation seems obviously, the best tool to evaluate radiation 

treatment [29].  

Due to the slow radiological response of the meningiomas and 

their supposed radio resistance, some authors have suggested 

that RECIST criteria were not adapted to the evaluation of the 

tumor response in case of benign tumors [2,3]. Since 2000, the 

one-dimensional (1D) measurements of the RECIST criteria 

substituted the bi-dimensional (2D) measurements derived from 

the WHO criteria, after that several studies have shown that 

the former was more reliable and reproducible than the latter 

and that results were comparable in terms of tumor response 

[30,38,39]. Some authors proposed after irradiation of 

meningiomas at least 2 mm reduction of the LTD to conclude to 

a tumor response [24,53]. This method has also been disputed 

because of its unsuitability for complex shaped lesions [2]. 

Volumetric measurements were considered the reference of our 

study. Indeed, it was demonstrated that this method could 

detect very small variations in volumes, which other radiological 

methods cannot offer so precisely [40]. However, the manual 

delineation is very time consuming. To simplify the method, TV 

can be estimate from mathematical formulas that take in 

account the three diameters in the three dimensions of the 

lesion. However, these calculations have been disputed 

because they overestimated the TV by assuming geometric 

shapes to the lesions [1,43,44].  

Thresholds for the volumetric have not been previously clearly 

defined. Some authors proposed to considered increase or 

decrease of 10, 15 or 20% to specify TP and PTR, respectively 

[1,45,47,48]. Because of the close vicinity of lots of critical 

organs of base of the skull meningioma, because of the onset 

or resolution of symptoms although the meningioma often seems 

not change, we considered that a very small change of volume 

should be responsible of clinical improvement or impairment. 

Thus a -5% from baseline change has been chosen to 

determine PTR and a +5% increase from baseline to define PT. 

This study is the first to compare five methods of radiological 

response and four methods for kinetic responses. Indeed, some 

authors clearly demonstrated the mathematical reasons that 

could explained the discrepancies between the 1D, 2D and 

volumetric measurement [29,38]. A 20% increasing in 1D 

measurement corresponds to an increase of 44% in 2D 

measurements whereas the threshold of progression is fixed at 

25% in the WHO criteria [29,38,54,55]. Furthermore, in three 

dimensions, this would be equivalent to a 73% increase in 

tumor volume [38,55]. Thus, very small variations in diameter 

can be manifested by significant variations in volume.  

This was perfectly demonstrated in the current study when 

comparing volumetric and LTD radiological response. In 

absolute value, the mean reduction between baseline and last 

follow-up LTD was -4 mm (range: -18 to 1). This was equivalent 

to a relative reduction of the baseline LTD of -8.1% (range: -

35.4 to 3.2). In comparison, there were relative diminutions of -

29.4% (range: -83.9 to 2) on software-TV and -30.3% (range: 

-60.1 to 8.1) on calculated-TV. This demonstrates the risk of 

ignoring a tumor response by the LTD method compared to the 

volumetric ones. The analysis of the tumor kinetics based on the 

follow-up of the LTD showed a significant and continuous 
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decrease from 6 to 60 months after the radiotherapy as well 

the analysis of the volumes. However, this tendency toward 

tumor decrease was much less marked than with the reduction 

of volumes, demonstrating once again that the follow-up by 

volumes is much more sensitive.  

Because this analysis is retrospective, results could be hugely 

disputable. The assumed choice of a 5% variation to determine 

volumetric thresholds should be confirmed in future analyses of 

others groups.  

Only one physician has performed all measurements during a 

short period. One could argue that a delineation performed by 

several physicians could improve quality of it. We considered 

that one delineator, well trained; multiplying the delineations 

of the same kind of tumor, localized in the same area, 

decreased the risk of heterogeneity due to the inter-observer 

interpretations. The number of patients and MRI analyzed in 

this series should be considered enough to design robust 

conclusions. More organized MRI sequences could have 

improved the number of collected and calculated data, but 

with 73% of suitable MRIs, representing more than 4 MRI per 

patients this series presented consistent data. 

CONCLUSION 

Manual volumetric measurements proved that radiation 

therapy efficacy is much betterthan the LTD can show. For 

patient information, manual volumetric measurements are more 

reliable and for scientific evaluation this method is more robust. 

However, it is a time-consuming method and automatic 

delineations should be welcome. 
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ANNEXE 1 

                                      N 

- Software-TV = d ∑ ai 
i=1 

Software-TV = Tumor Volume determined by software, TV = the tumor volume, d is the slice thickness, N is the 

number of slices and ai = tumor area measured on each slice. 

- calculated-TV = 0.52 * h * w * l  

Calculated-TV = calculated tumor volume, h = height, w = weight and l = length 
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