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ABSTRACT 

Scientific learning is advanced when researchers test their theories empirically. Results 

of empirical studies will either confirm or refute the theory, but also suggest 

modifications to the existing theory. All empirical studies need to be carefully and 

efficiently planned, and the resulting data must be analyzed with appropriate 

methods. This paper provides a primer on the design and the statistical analysis of 

laboratory studies that should be useful to scientists carrying out such work. 

Several topics are discussed in detail: the display of data; common parametric and 

nonparametric statistical methods; techniques for checking normality; the appropriate 

analysis of data from repeated measurement designs; important principles of 

effective experimental designs and the selection of the sample size; the role of 

statistical significance and why the size of the estimated effect matters; meta-analysis 

for combining the results of multiple studies; and the implementation of statistical 

techniques in commonly used computer packages. 

INTRODUCTION 

I have been the consulting statistician at the Center for the Prevention and Treatment 

of Visual Loss at the Iowa City VA Health Care System. Over the last ten years I have 

been an investigator on more than 30 grants and I have contributed to numerous 

publications. Many of our projects deal with laboratory studies. Similar questions 

about the appropriate design of experiments and the correct analysis of the resulting 

data turn up in every project. Since the same questions are raised repeatedly, I have 

circulated this brief tutorial to our research team of about 20 investigators to help 

them avoid the most common mistakes. I believe that this tutorial can also be helpful to 

the many research groups that work on similar biology and medical science projects. 

Section 2 of this tutorial discusses how to best display the data. Section 3 discusses 

common statistical methods, both parametric methods that assume normality of the 

observations as well as nonparametric methods that relax the assumption of normality. 

Various methods for checking normality are reviewed. Most of our data comes from 

repeated measurement designs. There experimental units are assigned to several 

groups at random, and repeated measurements are taken at various points in time. 

Chapter 4 discusses how the data from such experiments should be analyzed. 

Principles of effective experimental designs and a detailed discussion on how to 

obtain the appropriate sample size that allows investigators to detect scientifically 

meaningful effects are given in Section 5. Section 6 discusses the role of statistical 
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significance. Statistical significance is not all that matters; the 

size of the estimated effect is also critical. Meta-analysis, a 

statistical procedure for combining the results of multiple 

studies, is reviewed in Section 7. Individual study results are 

measured with error. The aim of a meta-analysis is to derive a 

pooled estimate that is closest to the unknown common truth. 

Both fixed-effects and random-effects implementations of 

meta-analysis are reviewed. The primer also explains how the 

various tools are implemented in the most common statistical 

software packages such as Minitab, SAS, R Statistical Software, 

and Graph Pad PRISM. 

EFFECTIVE VISUAL DISPLAY OF STUDY RESULTS 

Show all observations 

For small and moderately-sized studies, our recommendation is 

to show all individual observations. One can add to the graph 

of individual observations summary statistics such as the median 

and draw a box around the first and third quartiles. The plots 

in (Figure 1) draw attention to obvious outliers, which need to 

be scrutinized, and also to the shape of the distribution. We do 

not recommend to visualize the data with a bar chart that only 

shows the average and its standard error. The standard error 

of a sample average (calculated as the standard deviation of 

individual observations divided by the square root of the 

sample size) reflects the reliability of the sample mean as an 

estimate of the mean of the population from which the random 

sample is selected. Such a graph does not visualize the raw 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment of outliers 

Outliers can be safely omitted if there is clear evidence that 

something went wrong with a particular measurement or a 

particular experiment, and if one also knows why this has 

happened. However, in the absence of any evidence why such 

an outlier has occurred, the observation needs to be included in 

the analysis. Conducting two analyses – one with and the other 

without the questionable measurement – can tell us about the 

influence of a suspect observation on the conclusion. If the 

suspect observation does not have an influence on the 

conclusion, even better – because then there is no issue. But if 

an observation does and is hugely influential in reaching a 

certain finding, one should be careful about one’s conclusion. 

Example 

We consider data from an experiment with mice from two 

different treatment groups. The data was provided by Dr. 

Matthew Harper from the Iowa City VA Center for the 

Prevention and Treatment of Visual Loss. One group consists of 

13 control mice; the other group represents an experimental 

group of 12 mice exposed to a blast that is suspected to cause 

a traumatic brain injury and a deficit in functional 

performance. The rotarod performance of each mouse is 

measured at three consecutive time periods (1 = pre blast, 2 = 

7 days after blast; 3 = 30 days after blast). The rotarod test is 

a performance test based on a rotating rod with forced motor 

 

 

Figure 1: Two displays of the data in our example. 
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activity being applied. The test measures parameters such as 

riding time (seconds) or endurance and is typically used to test 

the effect of experimental drugs or after traumatic brain injury. 

The data in this example come from a repeated measurement 

design as the three observations are taken on the very same 

mouse. Mice are certainly not alike and their responses differ; 

later on, the mouse effect will be modeled as an additive 

random effect with its variance expressing the magnitude of 

that effect. The treatment groups (control and blast) contain 

different mice; in this design, mice are nested within the 

treatment group. We will have to say more on how such data 

should be analyzed. The objective of this particular study is to 

assess whether there is a treatment effect. That is, is the blast 

group different from the control group, and does the blast 

effect change with the time since exposure? 

The two graphs shown below (obtained by two different 

software programs; all data and code for the analysis are 

available on my website) represent every single measurement 

that has been taken. The dot plots for each group are 

displayed vertically, with identical values stacked horizontally 

(and not “over” plotted as then one would not know how many 

measurements are actually the same). Box plots summarize the 

data by showing the first, second (median), and third quartiles 

of each group. Groups are arranged in an order that 

facilitates the interpretation. The comparison of the first and 

second group assesses the blast effect at time 1 (now there 

shouldn’t be any blast effect as time 1 corresponds to pre-blast 

measurements); the comparison of the third and fourth group 

assesses the blast effect at time 2 (7 days after blast); and the 

comparison of the fifth and sixth group assesses the blast effect 

at time 3 (30 days after blast). The graph shows that blast 

tends to reduce the rotarod measurements. We can also assess 

the effect of time: The comparison of groups 1, 3 and 5 

assesses the time progression of control mice; we should not see 

large changes over time for the control mice; any changes seen 

could be due to day-to-day changes in the experimental set-up 

and perhaps a learning effect. The comparison of groups 2, 4, 

and 6 assesses the time progression for blasted mice. For 

blasted mice, rotarod measurements are smallest at time 2 (7 

days after the blast), whereas the measurements at time 3 (30 

days after the blast) are back to their pre-blast (time 1) level. 

For control mice, it is difficult to tell whether the three time 

groups are different. The dip at time 2, for both control and 

blasted mice, may be related to changes in the lab conditions 

at time 2. Of course, one should not over-interpret the data 

without knowing whether the effects of blast and time and their 

interaction are statistically significant. And for that we need to 

take into account how the experiment was carried out. The 

discussion of the analysis of repeated measurement designs is 

shown in a later section (Section 4). 

STATISTICAL METHODS 

There is a huge variety of statistical methods; the investigator 

needs to specify the question of interest and also must check 

whether the assumptions made by each statistical method are 

satisfied. Conclusions reached from statistical methods when 

assumptions are violated should not be trusted. Statistical 

methods can be divided into parametric and nonparametric 

methods. Common parametric methods, mostly related to the 

linear model, assume normality of the errors. Parametric 

methods include the typical t-tests (one-sample t-test for testing 

a hypothesis about the population mean; two sample t-tests for 

comparing two population means from independent samples, 

with and without assumptions on the equality of the two 

population variances; paired t-test for testing a difference of 

two population means from paired dependent samples), 

ANOVA methods for testing effects in models of different 

complexities, Bartlett tests for comparing the equality of 

variances, and correlation and regression methods.  

Normality should be checked before using statistical 

methods that assume normality  

Normality should be checked, both visually and numerically. 

Visually, with a q-q plot that displays observed values against 

normally distributed data. Numerically, through one of the 

numerous significance tests for normality, including the 

Anderson-Darling normality test, the Shapiro-Francia normality 

test, the Lilliefors (Kolmogorov-Smirnov) normality test, the 

Cramer-von Mises normality test, the Pearson chi-square 

normality test, the Shapiro-Wilk's test for normality, the 

Jarque-Bera normality test, and the D'Agostino normality test. 

As one would expect, graphical methods are typically not very 

useful when the sample size is small. Also, normal probability 

tests are not that powerful for small samples. Furthermore, the 

results of the different normality tests are not always the same 

as not every test for normality is equally sensitive to one or the 
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other violations of normality – while there is only one normality, 

there are certainly many different ways of violating normality. 

For an evaluation of normal probability tests; see Yap BW and 

Sim CH [1]. 

The ith largest observation in a sample of size n, )(ix ,is the 

observed sample quantile of order ( 0.5) /iP i n  .One 

can calculate the theoretical quantiles of order
iP for 

the ),( 2N distribution. This normal quantile is given by 

ii zq   where 
1( )

i i
z P

  is the quantile of 

the (0,1)N distribution; ( )z is the S-shaped cumulative 

distribution function of the standardized normal distribution. 

The quantiles
nzzz ,...,, 21 , for i = 1, 2,..., n,are called the 

standardized normal scores associated with the n ordered 

observations )()2()1( ,...,, nxxx . If the data do in fact come 

from the ),( 2N distribution, then ( )i i
x q and the points 

on the scatter plot of the observed quantiles )(ix against the 

theoretical normal quantiles i
q should about fall on a 45-

degree line. Such a plot is called a quantile-quantile (or q-q) 

plot, as one plots the quantile of one distribution (empirical) 

against the corresponding quantile of another (theoretical).  

The normal quantiles,
iq , depend on the parameters µ and σ. 

In practice, we can replace these parameters by their estimates 

x  and s. Alternatively, we can plot the observed quantiles 

)(ix directly against the standardized normal scores
iz . Since 

ii szxq   and since, under normality, ( )i i
x q , we find 

that the points on the scatter plot of )(ix against 
iz should lie on 

a straight line with slope s that goes through the point (0, ).x  

Deviations from the linear pattern provide evidence that the 

underlying distribution is not normal. It is also easy to estimate 

from this plot, at least approximately, the parameters µ and σ 

of the normal distribution. The slope in the q-q plot gives us an 

estimate of the standard deviation; the value at the intersection 

of the vertical line at 0iz  with the straight line through the 

data provides an estimate of µ.A q-q plot is effective because 

the human eye is quite good at recognizing linear tendencies. 

(Figure 2) illustrates normal q-q plots for the data from our 

illustrative example. Normality must be checked separately for 

each of the six groups, as the groups have different means and 

variances. We find that normal distributions are appropriate 

for several of these groups; however for some groups, such as 

the blast group at time 1, an assumption of normality is not 

reasonable. One could have guessed so from the dot plot of 

the observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also apply the various normal probability tests mentioned 

previously to the data for the no-blast and the blast group at 

time 1 [the NO (1) and the BL (1) groups]. The results are 

shown in (Table 1). (Figure 2) suggests that the data for NO (1) 

is normal, while normality should be rejected for BL (1). The null 

hypothesis in all these tests represents normality; a small 

probability value in the output of these tests indicates that 

 P-value for NO(1) P-value for BL(1) 

Anderson-Darling normality test 0.5351 0.0002 

Shapiro-Francia normality test 0.4835 0.0005 

Lilliefors (Kolmogorov-Smirnov) 0.6714 0.0001 

Cramer-von Mises normality test 0.5220 0.0003 

Pearson chi-square normality test 0.1718 0.0074 

Shapiro-Wilk's test for normality 0.8409 0.0006 

Jarque--Bera test for normality 0.9625 0.0002 

D'Agostino normality test Sample size < 20 Sample size < 20 

 

Figure 2: Normal probability plots. 

Table 1: Results of the various normal probability tests. 
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normality can be rejected. This is exactly what we see in Table 

1: Normality for the data in NO (1), and non-normality for the 

data in BL (1).  

Parametric models can be used if the errors are normally 

distributed. But what should be done if distributions are non-

normal?  

Transformable non-normality 

Certain aspects of non-normality can be overcome with 

transformations of the response variable. Box and Cox [2] 

discuss why and when transformations such as the logarithm, the 

square root, and the reciprocal can transform a non-normal 

variable into a normal one. A logarithmic transformation is 

indicated if the standard deviation is proportional to the level; 

a square root transformation is indicated if the variance is 

proportional to the level. Reciprocal transformations are useful 

if one studies the time from the onset of a disease (or of a 

treatment) to a certain event such as death. Distributions for 

time to death tend to be skewed to the right. The distribution of 

the reciprocal of the time to death, which expresses the rate of 

dying, can often be better approximated with a normal 

distribution. The analyst should explore transformations of the 

data (of the response as well as of the explanatory variables) 

and check whether histograms and normal-probability plots of 

the transformed data look (more) normal than those of the 

original data. For such transformable non-normality a 

parametric analysis can be applied to the appropriately 

transformed measurements. But if no reasonable transformation 

to normality can be found, non-parametric procedures which 

do not assume normality should be used.  

Non-parametric procedures 

Nonparametric equivalents are available for most parametric 

models. The one-sample Wilcoxon signed-rank test is a non-

parametric alternative to the one-sample t-test when the data 

cannot be assumed to be normally distributed. It is used to 

determine whether the median of the sample is equal to a 

known standard value. The Wilcoxon signed-rank test is used to 

compare two paired (matched) samples to assess whether their 

population mean ranks differ. It can be used as an alternative 

to the paired Student t-test. The Sign test tests whether 

matched pair samples are drawn from distributions with equal 

medians. The Mann–Whitney U-test (also referred to as the 

Wilcoxon rank sum test) tests whether two independent samples 

selected from populations are having the same distribution. 

Unlike the two-sample t-test for comparing two means, this test 

does not require the assumption of normal distributions. It is 

nearly as efficient as the t-test on normal distributions. The 

Mood median test tests whether two samples are drawn from 

distributions with equal medians. The Kruskal–Wallis one-way 

analysis of variance by ranks tests whether 2 or more 

independent samples are drawn from the same distribution. 

The Friedman two-way analysis of variance by ranks tests 

whether k treatments in randomized block designs have 

identical effects. The squared ranks test is used to test the 

equality of variances in two or more samples. The Spearman's 

rank correlation coefficient measures statistical dependence 

between two variables using a monotonic function. 

ANALYSIS OF DATA FROM REPEATED MEASUREMENT 

DESIGNS 

Most studies, such as the one discussed at the beginning of this 

paper, involve repeated measurements on the same subject (in 

this case, the subject is a mouse); for such designs repeated 

measurements on the same subject can be expected to be 

dependent. In our illustration, the repeated measurements 

experiment includes several mice in each of two blast groups 

(control and blast), and measurements on each mouse are taken 

at three different times. The observation ijk
Y on subject i, in 

blast group j, and at time k is represented by the model 

kjijkkjijijkY )()(  
 

where 

  is an intercept 

 j
 are(two) fixed differential blast effects, with 

1 2 0   . With this restriction, blast effects are expressed 

as deviations from the average. An equivalent representation 

sets one of the two coefficients equal to zero; then the 

parameter for the included group represents the difference 

between the levels of the included group and the reference 

group for which the parameter has been omitted.  

 ( )i j
 are random subject (mouse) effects, represented 

by a normal distribution with mean 0 and variance
2
 . The 

subscript notation ( )i j expresses that the subject i is nested 

within factor j, as each subject is observed under only a single 

https://en.wikipedia.org/wiki/Normal_distribution
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treatment group. This is different from the crossed design 

where each subject is studied under both treatment groups. 

 
k represent fixed time effects with coefficients 

adding to zero, 1 2 3 0     .  

 jk
 represent the interaction effects between the 

two fixed effects, blast and time, with row and column sums of 

the array jk
  restricted to zero.  

 ( )i j k
 are random measurement errors, represented 

by a normal distribution with mean 0 and variance 
2
 . 

The model is known as a linear mixed effects model as it 

involves fixed effects (here blast and time, and their 

interaction) and random effects (here the subject effects and 

the measurement errors). Maximum likelihood or, preferably, 

restricted maximum likelihood methods are commonly used to 

obtain estimates of the fixed effects and the variances of the 

random effects; standard errors of the fixed effects can be 

calculated as well. For detailed discussion, see McCulloch, 

Searle and Neuhaus [3]. Significance tests for the fixed effects 

and for any contrasts involving fixed effects that are deemed 

scientifically meaningful can also be carried out. For example, 

a contrast for the blast effect at time 1 may be of interest. The 

mean of the no-blast group at time 1 is 1 1 11      ; 

the mean of the blast group at time 1 is 2 1 21      ; 

hence the contrast for their difference is given by 

1 2 11 21      . This contrast should be zero 

(insignificant) as time 1 is a pre-blast period.  

Estimates of the two error variances come into play when 

testing the fixed effects. The variability between subjects is 

used when testing the blast effect; the measurement variability 

is used in the tests for time and the blast by time interaction. 

See, for example, Winer, Statistical Principles of Experimental 

Design, 2nd edition, pages 518 ff [4]. Since two different mean 

square errors are used for different tests, these experiments 

are also called split-plot experiments. Computer software for 

analyzing the data from this repeated measurement design is 

readily available. Here we describe four commonly-used 

packages: Minitab, SAS, R, and Graph Pad PRISM. They all 

lead to the same conclusions. Their general linear mixed effects 

model allows the user to incorporate random subject effects 

and repeated measures. An important feature of these 

software packages is that the can handle missing data. It would 

be quite unusual if a study would not have any missing 

observations, and software that can handle only balanced 

data sets would be of little use.  

Minitab: 

We use the General Linear Model (GLM) function under the 

Stat > ANOVA tab 

MTB > GLM Y = blast mouse(blast) time blast*time; 

SUBC> Random 'mouse'; 

SUBC> Brief 2. 

ANOVA for the General Linear Model: Illustrative Example 

Factor Type Levels Values 

blast fixed 2 0, 1 

mouse(blast) random 25 

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

23, 24, 25, 1, 3, 4, 15, 16, 18, 

19, 20, 21, 22, 26, 28 

time fixed 3 1, 2, 3 

 

Analysis of Variance for roto, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 

blast 1 390.74 390.74 390.74 3.89 0.061 

mouse(blast) 23 2313.24 2313.24 100.58 4.89 0.000 

above MS is used as denominator for the between subject comparison 

F(blast) = 390.74/100.58 = 3.89 

time 2 690.42 693.37 346.69 16.86 0.000 

blast*time 2 42.99 42.99 21.50 1.05 0.360 

Error 46 945.66 945.66 20.56   

above MS is used as denominator for the within subject comparisons 

F(time) = 346.69/20.56 = 16.86; F(blast*time) = 21.50/20.56 = 1.05 

Total 74 4383.05     

S = 4.53407 R-Sq = 78.42% R-Sq(adj) = 65.29% 

The p-value for the blast by time interaction is 0.360; there is 

negligible interaction between the two fixed effects, blast and 

time. In the absence of an interaction, the main effects of time 

and blast can be interpreted on their own. The p-value for time 

is 0.000; the effect of time is quite significant. The p-value for 

blast is 0.061; the effect of blast is insignificant at the 0.05 

significance level, but significant at the 0.10 significance level. 

We caution about interpreting probability values too narrowly; 

a p-value of 0.061 tells us that under the null hypothesis of no 

difference there is only a 6.1 percent chance of observing such 

a large effect (or one that is even larger) by pure chance. This 

small probability certainly puts doubt on the no-difference 

hypothesis.  
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SAS: 

SAS is another frequently-used software. We use the SAS 

PROC MIXED package. The input and output for the 

appropriate analysis are shown below. 

data example; 

 input mouse blast time roto weight; 

 datalines;  

1 1 1 53.09 29.5 

1 1 2 33.48 28.6 

1 1 3 46.21 30.2 

3 1 1 33.88 27.0 

3 1 2 30.95 26.3 

… 

24 0 3 30.11 28.3 

25 0 1 38.54 26.6 

25 0 2 31.09 27.1 

25 0 3 53.91 27.0 

; 

proc print data=example; 

proc mixed data=example method=REML; 

 class mouse blast time; 

 model roto=time blast time*blast/solution COVB CORRB; 

 random mouse(blast)/type=vc v vcorr; 

 contrast 'blast at time 1' 

 blast 1 -1 time*blast 1 0 0 -1 0 0/E;  

 contrast 'blast at time 2' 

 blast 1 -1 time*blast 0 1 0 0 -1 0/E; 

 contrast 'blast at time 3' 

 blast 1 -1 time*blast 0 0 1 0 0 -1/E; 

 contrast 'blast at fixed times' 

 blast 1 -1 time*blast 1 0 0 -1 0 0,  

 blast 1 -1 time*blast 0 1 0 0 -1 0, 

 blast 1 -1 time*blast 0 0 1 0 0 -1/E; 

 contrast 'time 1 vs 2 at no blast' 

 time 1 -1 0 time*blast 1 -1 0 0 0 0/E;  

 contrast 'time 1 vs 3 at no blast' 

 time 1 0 -1 time*blast 1 0 -1 0 0 0/E; 

 contrast 'time 2 vs 3 at no blast' 

 time 0 1 -1 time*blast 0 1 -1 0 0 0/E; 

 contrast 'time 1 vs 2 at blast' 

 time 1 -1 0 time*blast 0 0 0 1 -1 0/E;  

 contrast 'time 1 vs 3 at blast' 

 time 1 0 -1 time*blast 0 0 0 1 0 -1/E; 

 contrast 'time 2 vs 3 at blast' 

 time 0 1 -1 time*blast 0 0 0 0 1 -1/E; 

 contrast 'time at no blast' 

 time 1 -1 0 time*blast 1 -1 0 0 0 0,  

 time 1 0 -1 time*blast 1 0 -1 0 0 0, 

 time 0 1 -1 time*blast 0 1 -1 0 0 0/E; 

 contrast 'time at blast' 

 time 1 -1 0 time*blast 0 0 0 1 -1 0, 

 time 1 0 -1 time*blast 0 0 0 1 0 -1, 

 time 0 1 -1 time*blast 0 0 0 0 1 -1/E; 

 contrast 'times at fixed blast' 

 time 1 -1 0 time*blast 1 -1 0 0 0 0,  

 time 1 0 -1 time*blast 1 0 -1 0 0 0, 

 time 0 1 -1 time*blast 0 1 -1 0 0 0, 

 time 1 -1 0 time*blast 0 0 0 1 -1 0,  

 time 1 0 -1 time*blast 0 0 0 1 0 -1, 

 time 0 1 -1 time*blast 0 0 0 0 1 -1/E; 

run; 

The first table in the output shows the variances of the two 

random effects, 
2ˆ 26.67  and

2ˆ 20.56  . The second 

table summarizes the tests of the fixed effects: as expected, 

the results are the same as the ones we have seen earlier for 

Minitab. The last table illustrates the results when testing for the 

contrasts of interest. The first three lines list the probability 

values when testing for a blast effect at each of the three fixed 

time periods. We refer the reader to the program code on 

how to ask for these contrasts. As expected, there is no blast 

effect at time 1 (p-value = 0.382), while there are significant 

blast effects at time 2 (p-value = 0.043) and time 3 (p-value 

= 0.049). The insignificance of blast effects at time 1 is 

reassuring as measurements at time 1 are taken before the 

blast is administered to the mice in the blast group.  

 

 

 

 

 

 

 

 

 

Covariance Parameter Estimates 

Cov Parm Estimate 

mouse(blast) 26.6726 

Residual 20.5578 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

blast 1 23 3.89 0.0609 

time 2 46 16.86 <.0001 

blast*time 2 46 1.05 0.3597 
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Contrasts 

Label Num DF Den DF F Value Pr > F 

blast at time 1 1 46 0.78 0.3823 

blast at time 2 1 46 4.31 0.0435 

blast at time 3 1 46 4.10 0.0488 

blast at fixed times 3 46 1.99 0.1283 

time 1 vs 2 at no blast 1 46 4.20 0.0461 

time 1 vs 3 at no blast 1 46 3.82 0.0567 

time 2 vs 3 at no blast 1 46 16.04 0.0002 

time 1 vs 2 at blast 1 46 14.01 0.0005 

time 1 vs 3 at blast 1 46 0.03 0.8568 

time 2 vs 3 at blast 1 46 15.40 0.0003 

time at no blast 2 46 8.02 0.0010 

time at blast 2 46 9.82 0.0003 

times at fixed blast 4 46 8.92 <.0001 

 

R Statistical Software: 

R is yet another frequently used software package. We use the 

lmer function in the R library lme4. Input and output for the 

appropriate analysis are shown below. Note that R 

parameterizes effects in a different (but equivalent) way. 

Instead of expressing blast effects as deviations from the 

average (with restriction 1 2 0   ), lmer sets the first 

coefficient equal to zero ( 1 0  ) and interprets 2  as the 

effect of the second group (here the blast group, coded as 1) 

as compared to the first group (here the control group, coded 

as 0). 

library(lme4) 

data=read.table(header=TRUE,text ="mouse blast time roto 

weight  

1 1 1 53.09 29.5 

1 1 2 33.48 28.6 

1 1 3 46.21 30.2 

3 1 1 33.88 27.0 

… 

24 0 3 30.11 28.3 

25 0 1 38.54 26.6 

25 0 2 31.09 27.1 

25 0 3 53.91 27.0 

") 

data 

data$blast=factor(data$blast) 

data$time=factor(data$time) 

data$mouse=factor(data$mouse) 

out1 = lmer(roto ~ (1|blast:mouse) + blast + time + time:blast, 

REML=TRUE, data=data)  

out1 

Linear mixed model fit by REML ['lmerMod'] 

Formula: roto ~ (1 | blast:mouse) + blast + time + time:blast 

 Data: data 

REML criterion at convergence: 456.0832 

Random effects: 

Groups Name Std.Dev. 

blast: mouse (Intercept) 5.165 

Residual  4.534 

Number of obs: 75, groups: blast:mouse, 25 

Fixed Effects: 

(Intercept) blast1 time2 time3 blast1:time2 blast1:time3 

38.405 -2.427 -3.645 3.477 -3.284 -3.141 

anova(out1)  

Analysis of Variance Table 

 Df Sum Sq Mean Sq F value 

blast 1 79.87 79.87 3.8850 

time 2 690.42 345.21 16.7922 

blast:time 2 42.99 21.50 1.0457 

 summary(out1) 

Linear mixed model fit by REML ['lmerMod'] 

Formula: roto ~ (1 | blast: mouse) + blast + time + time: blast 

Data: data 

REML criterion at convergence: 456.1 

Scaled residuals: 

Min 1Q Median 3Q Max 

-1.83817 -0.48780 -0.01035 0.45855 2.15602 

 Random effects: 

Groups Name Variance Std.Dev. 

blast:mouse (Intercept) 26.67 5.165 

Residual  20.56 4.534 

Number of obs: 75, groups: blast: mouse, 25 

Fixed effects: 

 Estimate Std. Error t value 

(Intercept) 38.405 1.906 20.149 

blast1 -2.427 2.751 -0.882 

time2 -3.645 1.778 -2.050 

time3 3.477 1.778 1.955 

blast1:time2 -3.284 2.567 -1.279 

blast1:time3 -3.141 2.567 -1.224 
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Correlation of Fixed Effects: 

 (Intr) blast1 time2 time3 bls1:2 

blast1 -0.693     

time2 -0.467 0.323    

time3 -0.467 0.323 0.500   

blast1:tim2 0.323 -0.467 -0.693 -0.346  

blast1:tim3 0.323 -0.467 -0.346 -0.693 0.500 

 

Graph Pad PRISM: 

Each column of the data matrix includes the measurements on a 

mouse, with the repeated measurements at times 1, 2 and 3 

given in rows. The first 12 columns come from mice that were 

exposed to the blast (group A), while the next 13 columns 

represent the measurements of the control mice (group B). Each 

row represents a different time point, with matched (repeated) 

values being stacked into each column. The average response 

for the blast group is 4.569 units smaller than that of the 

control group. 

Two-way RM ANOVA 

Matching: Stacked 

Assume sphericity? Yes     

Alpha 0.05 

Source of 

Variation 

% of total 

var 
P value 

P value 

summary 
Significant? 

Time x Blast 0.9809 0.3597 ns No 

Time 15.82 <0.0001 **** Yes 

Blast 8.915 0.0609 ns No 

Subject 52.78 <0.0001 **** Yes 

 

ANOVA table SS DF MS F (DFn, DFd) P value 

Time x Blast 42.99 2 21.50 F (2, 46) = 1.046 P=0.3597 

Time 693.4 2 346.7 F (2, 46) = 16.86 P<0.0001 

Blast 390.7 1 390.7 F (1, 23) = 3.885 P=0.0609 

Subject 2313 23 100.6 F(23,46) = 4.892 P<0.0001 

Residual  945.7 46 20.56  

 

 

 

 

Difference between column means 
 

Mean of Group A 33.78 

Mean of Group B 38.35 

Difference between means -4.569 

SE of difference 2.318 

95% CI of difference -9.364 to 0.2263 

 

Here we discussed a simple repeated measurement design. 

Two extensions that are often useful are discussed in Appendix 

1. 

DESIGN OF EXPERIMENTS 

Introduction 

Questions about the most effective ways to design experiments 

and issues of sample size and power come up all the time in 

medical research. Designing an appropriate experiment is not 

easy; at the outset of a study there is much uncertainty and not 

much is known. One could say that “the best time to design an 

experiment is after the results of the experiment have come in.” 

But knowing this doesn’t help the investigator. A thorough 

knowledge of experimental design principles can improve the 

efficiency of experiments. Important statistical design principles 

are replication, randomization, blocking, multi-factor instead of 

one factor at-a-time experimentation, and a sequential 

approach to experimentation. The sequential approach to 

experimentation is important, with the results from initial 

experiments being used to determine the next experimental 

steps. Only a portion of the overall budget should be spent on 

the initial runs. Detailed discussion on these principles can be 

found in books on the statistical design of experiments, such 

Box, Hunter and Hunter [5], Ledolter and Swersey [6], 

Montgomery [7], and of course in R.A. Fisher’s seminal 

contributions. Knowledge about the subject area the 

experiment addresses, common statistical sense, and a careful 

implementation of the experimental study plan are also critical. 

In medical research, investigators run experiments all the time, 

and evidence-based medicine relies on randomized 

experiments to confirm which of several treatments are the 

most effective. The search for effective ways to design 

experiments and issues of sample size and statistical power are 

commonplace in scientific experimentation. If experiments are 

executed poorly, little or even nothing will be learned from the 

resulting data. While it is true that most experiments increase 

knowledge (one usually learns “something” through 

experimentation), the experimenter wants to learn as 

efficiently as possible. Relatively few experimental runs 

(observations) are needed in efficient experimental designs to 

get precise estimates of the factor effects. Sir Ronald Fisher, 

the eminent statistician and scientist who developed this area, 

said that “a well-designed experiment may improve the 
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precision of the results tenfold, for the same cost in time and 

labor” [8]. 

Prior to running an experiment one needs to determine the 

sample size required to identify scientifically meaningful 

effects. In other words, one must address the question whether 

a certain sample size is sufficient to detect a specified response 

effect. If the sample size is too small, observed effects may not 

be statistically significant and meaningful effects may not be 

uncovered.  

It is very important to know whether the data that can be 

expected from an experiment have a realistic chance of 

detecting meaningful effects. Consider, for example, an 

experiment on patients that studies the effect of an intervention 

on certain measured health indicators. Typically one knows how 

large an effect must be to be judged clinically meaningful. 

Research studies are expensive, and costs increase with the 

number of subjects that need to be recruited into the study. 

Prior to running the experiment, one must calculate the 

statistical power of detecting (practically) meaningful effects. 

For some planned experiments this may not be possible; many 

more subjects may be needed to learn about clinically 

important effects. If one cannot afford the required sample 

sizes, one must restructure or abandon the problem in favor of 

problems that can be solved with the budget at hand. If there 

is little chance that meaningful effects can be detected, the 

money is better spent elsewhere. While medical grant 

proposals typically require a section on sample size and 

power, these sections are usually written in a defensive manner 

to justify the experimental plan the investigator has settled on 

a long time ago. Often these sections are written to defend a 

prior the investigator has, and they rarely assess critically 

whether the planned research is worth its cost. Many times they 

represent an intricate "song and dance" to justify why limited 

funds can be used to study something experimenters want to 

study. Experimenters need to understand that sample size 

studies are there to help them; sample size studies are not 

there to game the system to achieve funding. 

Programs for calculating sample size and power 

Most statistics packages have this capability. Also, there are 

programs dedicated to this task exclusively such as the sample 

size/power programs by Lenth [9]. Lenth’s sample size applets 

(they are free, good and easy to use) cover many situations, 

such as tests involving: 

 Numeric outcome variables (emphasis on means and 

variances) 

 Categorical outcome variables (emphasis on 

proportions) 

 Regression context such as estimating a slope 

 Factorial experiments 

Theory behind power studies: Testing a hypothesis about 

the mean of a normal distribution 

Here we illustrate the basics behind a power study. We go 

through this simple example in great detail. The selection of 

sample sizes and power studies for a few other more 

complicated testing situations are summarized in Appendix 2. 

Assume that you test the null hypothesis 00 :  H  against 

the alternative hypothesis 01 :  H . You are testing the 

research hypothesis whether or not an intervention leads to a 

reduction from the current known mean 0 .When determining 

the appropriate sample size, you need to specify values for 

the four following items: 

 )(YVar , the standard deviation of the 

measurement variable Y 

 The significance level (the probability of rejecting a 

true null hypothesis); usually 05.0  

 The power (usually 0.80) to detect a certain specified 

detectable difference of interest 001   . Note: 

1 0.8 0.2    is the probability of a type II error (that is, 

accepting the null hypothesis 0H  if the mean has shifted 

to 1 0 0      ) 

 

 

 

Result: The required sample size is  

 
2

2

2

01

2

1 













 






 


  zzzz

n ; 

z and z are percentiles of the standard normal distribution. 
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Proof: How does one obtain this result? The proof shown here 

provides insight into how such questions are solved. The same 

arguments can be applied to the more elaborate designs 

covered in Appendix 2.  

Starting from the significance level, 
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Starting from the power, 

Power =  P[Reject H0 | H1 is true] = P[reject H0 | ] 
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Solving the two 

equations

n
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0

 and

n
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zzPower 




1
1


   for the 

two unknowns c and n, leads to the above result for the 

required sample size n. 

 

Example: 1)(  YVar  and detectable 

difference 3.001   ; 05.0  

and 645.1z ; 20.0  (power = 0.80) and 

8416.020.0 z . 

Then: 

  
4.68)4816.2)(9/100(

)09.0(

)8416.0645.1( 2
2

2

2


















 zz
n

 

The required sample size is 69. 

Facts to remember:  

 

 Sample size increases with power. The more power 

you want, the larger the sample size. 

 Sample size increases with decreasing detectable 

difference. The smaller the difference you want to detect, the 

larger the sample size. 

 Sample size increases proportionally to the variance. 

The larger the uncertainty, the larger the sample size must be. 

The sample size quadruples with a doubling of the standard 

deviation. 

 Two-sided tests require a larger sample size than 

one-sided tests. 

Comment: This result can be applied to the paired (blocked) 

test with response XYD  . In this case 

)()(),cov(2)()()( XVarYVarXYXVarYVarDVar   

if blocking has been effective. 

 

STATISTICAL SIGNIFICANCE IS NOT ALL THAT MATTERS: 

EFFECT SIZE VS STATISTICAL SIGNIFICANCE 

 

In 2005, JPA Ioannidis [10,11] wrote two influential papers 

that suggest that up to 50% of medical studies are not 

reproducible. Why is this so? Various explanations can be 

given to support this claim, among them 

 Publication bias. Only statistically-significant results 

are being published. This excludes studies that have been 

underpowered from the start, with little chance of detecting 

meaningful effects. 

 Institutional pressure to be funded and published. 

Trickery to “chase p-values” and to make results significant, 

even though a fresh view of the evidence may tell you 

otherwise. This has to do with the treatment of outliers, the 

selective use of methods and ignoring the violations of 

assumptions that are critically relevant to the adopted methods, 

and “looking away” from facts that may contradict what you 

want to see.  
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 Statistical significance and probability values is not all 

that matters. One must also look at the magnitude of the 

estimated effects. Repeated positive results, even though not 

statistically significant in each individual study, can combine to 

very significant results if results are combined through meta-

analysis. However, if non-significant studies are not being 

published, a meta-analysis is compromised as one doesn’t have 

access to studies with statistically insignificant results. 

 Cohen's d relates the difference of the two group 

means to the pooled standard deviation; it is an estimate of the 

effect size. General “rule of thumb” guidelines consider Cohen's 

d of 0.2 as a small effect, 0.5 as a medium-sized effect, and 

0.8 as a large effect. Cohen's d supplements the results of 

inferential testing [12]. 

 Statistical significance does not amount to much if the 

magnitude of the estimated effect is not scientifically/clinically 

relevant. One must not confuse statistical significance of 

estimated effects with the practical significance of estimated 

effects. Probability values alone do not tell the complete story, 

as even the smallest effect can be made significant if the 

sample size is increased.  

 Statistical significance does have value as a protection 

against tampering. One should not change an established 

protocol on the basis of an estimated effect that has not been 

found statistically significant. Without statistical significance, the 

effect may be due to pure chance. But even if an estimated 

effect is significant, one may not change an established 

protocol if the size of the effect is scientifically/clinically 

irrelevant. 

 Confidence intervals are preferable to probability 

values. Confidence intervals tell us about both the magnitude of 

the estimated effect and the uncertainty of the estimate.  

 Probability values are preferable to binary statistical 

significance findings. Statistical significance (if this is what you 

are after) is better expressed through the probability value 

than the associated binary No/Yes statistical significance 

finding that one gets by comparing the probability value to an 

arbitrarily-chosen significance level cutoff such as 0.05 or 0.10. 

A result with probability value 0.105 is not all that different 

from one with probability value 0.095 or even 0.047, 

especially if the data set is small and if there is uncertainty 

whether all assumptions that go into a probability value are 

actually satisfied. 

 In a 2019 special issue of The American Statistician 

[13], the American Statistical Association recommends against 

abusive use of probability values; the lead editorial suggests 

abandoning the use of the term "statistically significant" 

altogether. 

META-ANALYSIS TO COMBINE RESULTS FROM DIFFERENT 

STUDIES 

Meta-analysis is a statistical procedure for combining the 

results of multiple studies. Individual study results are measured 

with error. The aim of a meta-analysis is to derive a pooled 

estimate closest to the unknown common truth. While there are 

many different methods for meta-analysis (with each version 

making slightly different assumptions), all existing methods 

yield a weighted average of the results of the individual 

studies. The difference is in the way these weights are 

calculated and the way in which the uncertainty is computed 

around the weighted point estimate. The common and critical 

assumption in meta-analysis is that the results of multiple studies 

are independent. Studies include different subjects, and there 

are no links between the studies. 

For illustration, we use the data from Bjordal et al. [14] shown 

below (Table 2). It lists the outcomes of 10 individual studies on 

the effect of non-steroidal anti-inflammatory drugs on 

osteoarthritic knee pain. Study summary statistics of the effects 

are shown below. A positive effect indicates that non-steroidal 

anti-inflammatory drugs work better than the placebo. The 

standard error of a study effect is obtained by dividing the 

standard deviation of the effect measurements from individual 

participants in the study with the square root of the sample 

size. 95% confidence intervals and one-sample t-ratios are 

also calculated. Two-sided probability values testing whether 

or not the intervention is significant (mean different than 0) are 

also shown. Results for three of the 10 studies are not 

statistically significant. We use this example to illustrate the 

basic concepts behind a meta-analysis. When performing a 

meta-analysis, the investigator must make choices and those 

choices can affect the results. Tricky issues here are selecting 

the appropriate studies based on objective criteria, dealing 

with incomplete data, analyzing the data, and dealing with 

 

https://en.wikipedia.org/wiki/Weighted_average
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how to account for (or choosing not to account for) publication bias. 

 

 

 

 nobs 
estimated 

effect = y 

se(effect) 

̂  

95% CI 

lower 

95% CI 

higher 
t-ratio p-value 2-sided 2ˆ1/  weights w fixed effects 

Dore (1995) 254 0.37 0.133 0.110 0.630 2.789 0.005 56.828 0.065 

Fleischmann (1997) 279 0.04 0.128 -0.210 0.290 0.314 0.754 61.466 0.070 

Kivitz (2002) 613 0.27 0.084 0.105 0.435 3.207 0.001 141.106 0.162 

Lee (1985) 422 0.31 0.102 0.110 0.510 3.038 0.002 96.040 0.110 

Lund (1998) 271 0.26 0.122 0.020 0.500 2.123 0.034 66.694 0.076 

Schnitzer (1995) 270 0.40 0.133 0.140 0.660 3.015 0.003 56.828 0.065 

Scott (2000) 610 0.08 0.082 -0.080 0.240 0.980 0.327 150.062 0.172 

Tannenbaum (2004) 1702 0.20 0.069 0.065 0.335 2.904 0.004 210.787 0.242 

Uzun (2001) 39 0.53 0.357 -0.170 1.230 1.484 0.138 7.840 0.009 

Williams (2001) 104 0.38 0.202 -0.015 0.775 1.886 0.059 24.622 0.028 

Table 2: Results of ten studies on the effect of non-steroidal anti-inflammatory drugs on osteoarthritic knee pain. 

 

Figure 3: Meta-analysis of the data from Table 2. 

https://en.wikipedia.org/wiki/Publication_bias
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The fixed-effects model 

The fixed-effects model calculates a weighted average of the 

reported estimated study effects,
iy .The sample variance of a 

study effect, denoted by
2ˆ
i

 , reflects the reliability of the 

estimate; it can be obtained by squaring the standard error in 

the fourth column of the table. The inverse of this 

variance,
2ˆ

i
 

, is commonly used as the weight for the study 

effect, so that larger studies contribute more than smaller 

studies to the weighted average. The weights 
2ˆ

i
 

and the 

normalized weights

2

2

ˆ
ˆ

i
i

i

w








 are shown in the last two 

columns of the table. The pooled estimate of the common 

treatment effect calculates the weighted average of the study 

effects,
1

n

pooled i ii
effect w y


 ; the standard error of the 

pooled estimate is given by 
2

1
( )

ˆpooled

i

se effect
 


. 

These results are the ones we get when applying generalized 

least squares to estimate a common mean effect from n study 

effects with associated variances
2ˆ
i

 (see Abraham and 

Ledolter [15]. 

For our 

example, 0.228
pooled

effect  and ( ) 0.034
pooled

se effect  , 

yielding an approximate 95% confidence interval 

0.228  (2)(0.034) that extends from 0.16 to 0.30. The 

probability value for testing whether or not the common effect 

is zero is less than 0.001. 

The fixed-effects model assumes that all included studies are 

from the same population. This assumption may be unrealistic 

as studies are heterogeneous. For example, the treatment 

effects may differ according to local study conditions and 

dosage levels. This is where the random-effects model shown 

next comes in as it relaxes this assumption. 

The random-effects model 

The random-effects model assumes that the treatment effect 

from the ith study,
iY , is distributed as 

2| ~ ( , )i i i iY N    

where 
i  is the true underlying treatment effect of the ith study 

and
2
i

 is the corresponding within-study variance. The 

variance
2
i

 is unknown but an estimate 
2ˆ
i

 is available from 

each individual study. The random-effects model further 

assumes that
2~ ( , )

i
N   , where   and 

2 denote the 

overall treatment effect and the between-study variance, 

respectively. These two assumptions imply the marginal 

distribution
2 2~ ( , )i iY N    .  

Random-effects procedures for meta-analysis differ by 

how
2 gets estimated. The procedure suggested by Der 

Simonian and Laird [16] is the simplest and most common 

random-effects method. Their approach uses the Q 

statistic,
2 2

1
( )

n

i ii
Q y y 


  where 

2 2

1 1 1

n n n

i i i i ii i i
y y w y  

  
     is the pooled 

estimate under the fixed-effects model. Under the assumptions 

of the random-effects model (where the observed values
iy are 

generated from the above model for the
iY ) it can be shown 

that the expectation of Q 

is 22
1

1

( ) ( 1) ( )
S

E Q n S
S

    where
2

1 1

n

ii
S  


 and

4
2 1

n

ii
S  


 . Replacing all unknown variances

2
i

 with their 

estimates 
2ˆ
i

  and solving this equation for 
2 leads to the Der 

Simonian and Laird estimate
2

2
1

1

( 1)ˆ max(0, )
DL

Q n

S
S

S

  



.  

The estimate of the common treatment effect is then given by 

the weighted average 

2 21

2 21

ˆ ˆ
1

ˆ ˆ

n
i

i
ni DL

DL i ii nn
i

i
i DL

y

effect w y
 

 








 







, with 

weights

2 2

2 2

1

ˆ ˆ1/ ( )

ˆ ˆ[1/ ( )]

i DL
i n

i DLi
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. The standard error of the 
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estimate is

2 21

1
( )

1

ˆ ˆ

DL
n

i
i DL

se effect

 




. Confidence 

intervals and the probability value can be calculated 

accordingly. 

 

For our data set 10.6986Q  , 1 872.27S  , 

2 111,437S   and 
2ˆ 0.002281
DL

  . The estimate of the 

overall treatment effect is 0.234DLeffect  and 

( ) 0.038DLse effect  . 

 

The difference between a random-effects and a fixed-effects 

model for meta-analysis is that the random-effects model 

allows for variability among the study effects, while in the 

fixed-effects model all studies are assumed to originate from a 

single common mean. In our example the results of the random-

effects and the fixed-effects meta-analysis are quite similar. 

Larger differences can be expected if the variability among 

the study effects gets larger. 

 The R library meta can be used to carry out the 

analysis and visualize the results. The output shows both the 

fixed-effects and random-effects weights. The forest plot 

visualizes the information. The forest plot is a graphical display 

of estimated results from a number of scientific studies 

addressing the same question, along with the overall meta-

analysis results. It plots the estimated effect for each of these 

studies (with each estimate represented by a square) and 

displays confidence intervals by horizontal lines. The area of 

each square is proportional to the weight that is attached to 

the study by the meta-analysis. The pooled effect from the 

meta-analysis is commonly plotted as a diamond. A vertical 

line representing no effect is also plotted. Confidence intervals 

for individual studies that overlap with this line demonstrate 

that at the given level of confidence their effect sizes do not 

differ from zero. The name forest plot refers to the forest of 

lines produced. 

> library(meta) 

> data=read.table(header=TRUE,text="nobs effect se study 

+ 254 0.37 0.133 Dore 

+ 279 0.04 0.128 Fleischmann 

+ 613 0.27 0.084 Kivitz 

+ 422 0.31 0.102 Lee 

+ 271 0.26 0.122 Lund 

+ 270 0.40 0.133 Schnitzer 

+ 610 0.08 0.082 Scott 

+ 1702 0.20 0.069 Tannenbaum 

+ 39 0.53 0.357 Uzun 

+ 104 0.38 0.202 Williams 

+ ") 

> data$s=data$se*sqrt(data$nobs) 

> data 

 nobs effect se Study s 

1 254 0.37 0.133 Dore 2.119671 

2 279 0.04 0.128 Fleischmann 2.138022 

3 613 0.27 0.084 Kivitz 2.079742 

4 422 0.31 0.102 Lee 2.095349 

5 271 0.26 0.122 Lund 2.008373 

6 270 0.40 0.133 Schnitzer 2.185413 

7 610 0.08 0.082 Scott 2.025251 

8 1702 0.20 0.069 Tannenbaum 2.846616 

9 39 0.53 0.357 Uzun 2.229464 

10 104 0.38 0.202 William 2.060004 

> mm=metamean(nobs,effect,s,study,data=data) 

> print(mm) 

 

 mean 95%-CI %W(fixed) %W(random) 

Dore 0.3700 [ 0.1093; 0.6307] 6.5 7.3 

Fleischmann 0.0400 [-0.2109; 0.2909] 7.0 7.8 

Kivitz 0.2700 [ 0.1054; 0.4346] 16.3 15.7 

Lee 0.3100 [ 0.1101; 0.5099] 
1 

1.0 
11.6 

Lund 0.2600 [ 0.0209; 0.4991] 7.7 8.5 

Schnitzer 0.4000 [ 0.1393; 0.6607] 6.5 7.3 

Scott 0.0800 [-0.0807; 0.2407] 17.1 16.3 

Tannenbaum 0.2000 [ 0.0648; 0.3352] 24.1 20.9 

Uzun 0.5300 [-0.1697; 1.2297] 0.9 1.1 

Williams 0.3800 [-0.0159; 0.7759] 2.8 3.4 

Number of studies combined: k = 10 

 mean 95%-CI z p-value 

Fixed effect model 0.2285 [0.1621; 0.2950] -- -- 

Random effects model 0.2336 [0.1588; 0.3084] -- -- 

 

Quantifying heterogeneity: 

tau^2 = 0.0022; H = 1.09 [1.00; 1.52]; I^2 = 15.4% [0.0%; 

56.7%] 
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Test of heterogeneity: 

  

 

 

 

Details on meta-analytical method: 

- Inverse variance method 

- DerSimonian-Laird estimator for tau^2 

- Untransformed (raw) means 

> summary (mm) 

 

Number of studies combined: k = 10 

 mean 95%-CI z p-value 

Fixed effect model 0.2285 [0.1621; 0.2950] -- -- 

Random effects model 0.2336 [0.1588; 0.3084] -- -- 

Quantifying heterogeneity: 

tau^2 = 0.0022; H = 1.09 [1.00; 1.52]; I^2 = 15.4% [0.0%; 

56.7%] 

Test of heterogeneity: 

 Q d.f. p-value 

10.64 9 0.3013 

  

Details on meta-analytical method: 

- Inverse variance method 

- Der Simonian-Laird estimator for tau^2 

- Untransformed (raw) means 

> forest (mm) 
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APPENDIX 1: ANALYSIS OF DATA FROM TWO OTHER USEFUL REPEATED MEASUREMENT DESIGNS 

Model 1: 

Let us generalize the repeated measurement design that we discuss in the manuscript. Let us now assume that there is a third fixed 

factor, called new, and that this factor is crossed with time. For example, this third factor may express whether or not mice are 

“blindfolded” when running on the rotarod. Being crossed with time means that at each time a mouse gets exposed to both settings 

of the new factor, preferably in a randomized order with a coin flip deciding whether the blindfold is applied at the first or at the 

second rotarod session. The analysis assumes that the resulting 2*3 = 6 measurements on the same mouse are independent. We 

know that there are level effects due to the different mice, which leads us to also include random mouse effects into the model. 

 

For illustration, suppose that there are 12 mice in the blast group and 13 different mice in the control group. Then the design layout 

would look like this  

 

 Time=1 Time=2 Time=3 

 New=1 New=2 New=1 New=2 New=1 New=2 

Blast Yes G1 G1 G1 G1 G1 G1 

Blast NO G2 G2 G2 G2 G2 G2 

 

For this experimental setup the appropriate model is given by 

 

kljijklkljlljkkjijijklY )()(    

where i stands for subject, j for blast, k for time, and l for the factor new. The presence of a 3-factor interaction between blast, 

time and the factor new allows the two-factor interactions of any two factors depend on the third factor. The presence of such 3-

factor interaction can be tested. 

 

The appropriate ANOVA table for this particular repeated measurement design is shown below.  

Source DF 

Between subjects  

blast 1 

mouse within groups=blast 23 

Within subjects  

time 2 

blast*time 2 

new 1 

blast*new 1 

time*new 2 

blast*time*new 2 

error within subjects 115 

Total 149 
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The F-ratio for testing the significance of blast uses the mean square error that comes from the between subjects analysis (the mean 

square of mouse within blast). The F-ratios for all other fixed effects use the mean square error that comes from the within subjects 

analysis.  

Below we show the input code for MINITAB  

MTB > GLM roto = blast mouse(blast) time blast*time new blast*new & 

CONT> time*new blast*time*new; 

SUBC> Random mouse; 

SUBC> Brief 2. 

 

And SAS 

 

data mark; 

 input mouse blast time new roto; 

 datalines;  

1 1 1 1 32.1301 

1 1 2 1 30.0854 

1 1 3 1 29.7417 

1 1 1 2 30.1475 

1 1 2 2 31.7020 

1 1 3 2 30.8678 

. 

. 

. 

28 1 1 2 28.4039 

28 1 2 2 30.5219 

28 1 3 2 29.8264 

proc print data=mark; 

proc mixed data=mark; 

 class mouse blast time new; 

 model roto=blast time blast*time new blast*new time*new blast*time*new /solution; 

 random mouse(blast)/type=vc v vcorr; 

run; 

 

 

Model 2: 

 

Let us change the experiment in the following way. Assume now that a third factor “type” represents two different genetic mouse 

strains. Our experiment studies blasted and control (not-blasted) mice of either genetic strain. Blast and strain are crossed fixed 

effects as every level of one factor is combined with every level of the other. Each mouse taken from one of the four groups is then 

observed at three different times. This design looks like this 
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 Time  

Blast Yes Strain1 G1 G1 G1 6 mice 

Blast Yes Strain2 G2 G2 G2 5 mice 

Blast NO Strain1 G3 G3 G3 7 mice 

Blast NO Strain2 G4 G4 G4 4 mice 

 

This is a different repeated measurements design as now subjects are nested within the blast-strain combinations (there are 4 such 

groups). You certainly can’t have the same mouse come from both strain1 and strain2, and we do not allow a mouse to be in both 

the control and blasted group. Each of the four groups contains different mice. 

 

For this experimental setup the appropriate model is given by 

 

ljkijklkljlljkijkkjijklY )()(    

 

Where i stands for subject, j for blast, k for strain, and l for time. The appropriate ANOVA table for this particular repeated 

measurement design is shown below. 

Source DF 

Between subjects  

blast 1 

strain 1 

blast*strain 1 

mouse within groups=blast*strain 18 

Within subjects  

time 2 

blast*time 2 

strain*time 2 

blast*strain*time 2 

time*subject within groups=blast*strain 36 [2*5+2*4+2*6+2*3] 

Total 65 

 

The F-ratios for blast, strain, and the blast*strain interaction use the mean square error that comes from the between subjects 

analysis (the mean square of mouse within the 4 groups). F-ratios for all other fixed effects use the mean square error from the 

within-subjects analysis.  

 

Below, we have listed the appropriate code for MINITAB  

 

MTB > GLM roto = blast strain blast*strain mouse(blast strain) time & 

CONT> blast*time strain*time blast*strain*time; 

SUBC> Random mouse;  

SUBC> Brief 2. 
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and SAS 

 

data mark; 

 input mouse blast strain time roto; 

 datalines;  

1 1 1 1 53.09 

1 1 1 2 33.48 

1 1 1 3 46.21 

3 1 1 1 33.88 

. 

. 

23 0 2 2 37.99 

23 0 2 3 55.00 

; 

proc print data=mark; 

proc mixed data=mark; 

 class mouse blast strain time; 

 model roto=blast strain blast*strain time blast*time strain*time blast*strain*time /solution; 

 random mouse(blast*strain)/type=vc v vcorr; 

run; 

 

The layout for Graph Pad PRISM is similar to the one for the example in the main part of the paper, except here the columns of 

measurements on each mouse are grouped into four groups, with a group structure for each of the two factors (blast and strain). 

Each column of the data matrix includes the measurements on a mouse, with repeated measurements stacked in each column.  

 

 

APPENDIX 2: MORE RESULTS ON SAMPLE SIZE DETERMINATION AND POWER STUDIES 

 

Case 1: Testing a hypothesis about the difference of the means from two independent normal distributions 

Assume that you want to test 0: 120  H  against 0: 121 H . As before, we need to specify values for the 

following (now five) quantities: 

 

 1  and 2 : two standard deviations that need not be equal 

 significance level; usually 05.0  

 power (usually 0.80) to detect a given detectable difference of interest 012    

The function of the data relevant to test the above hypothesis is

1

2
1

2

2
2

12

)()(

nn

YY





. The proof of the results that are shown below 

can be found, for example, in Ledolter [17]. 
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Result: The required total sample size (for groups 1 and 2 together) is given by  

 
2

2

1 2

z z
N

   

 

  
 

.  

The sample sizes in the two groups, 1n and 2n , should be selected proportional to the standard deviations such that 

2

1

2

1





n

n
 . 

That is, 
1

1

1 2

n N


 



and 

2
2

1 2

n N


 



. 

 

Result: Assuming that the standard deviations are the same (   21 ), the optimal sample size in either of the two groups is 

2

2

2 










 


zz
n , for a combined sample size of 

2

2

42 










 


zz
nN . 

 

Facts:  

 Sample sizes should be proportional to the standard deviations. Equal sample sizes should be selected for 1 2   . 

 Sample size increases with power. The more power you want, the larger the sample size  

 Sample size increases with decreasing detectable difference. The smaller the difference you want to detect, the larger the 

sample size. 

 Sample size increases proportionally to the variances. The larger the uncertainty, the larger the sample size must be. 

 Two-sided tests require a larger sample size than 1-sided tests. 

Example: 32   and 11   ; detectable difference 5.012   ; 05.0  and 645.1z ; 20.0  

(power = 0.80) and 8416.020.0 z . 

Then:   394)13(
5.0

8416.0645.1 2

2
2

12

2

















 
 


 zz

N , for a total sample size of about 400. We 

should put 300 subjects into the group with standard deviation 32   and 100 subjects into the group with standard 

deviation 11  . 

 

 

Case 2: Sample sizes when comparing two independent lognormal distributions 

 

Often the response variable Y follows lognormal distributions, which implies that YX log  has a normal distribution with 

mean   and standard deviation . The mean of the lognormal distribution is given by
2( ) exp( 0.5 )E Y    , and the 

variance by  2 2( ) ( ) exp( ) 1Var Y E Y     . 
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Usually we are given the coefficient of variation for variable Y. Using results about the mean and variance of a lognormal 

distribution, the coefficient of variation is given by 1)exp(
)(

)( 2  
YE

YVar
c . We can solve this equation for , the 

standard deviation of the log-transformed observations YX log . It is )1log( 2
c .  

Furthermore, typically we are given the (proportionate) effect in the levels of the Y-observations that we want to detect. This means 

that 

)1)(()( 01 fYEYE   or )5.0exp()1()5.0exp( 2
0

2
1   f  . 

f = 0.2 means that we want to detect a 20 percent increase in the level; f = 0.25 means that we want to detect a 25% increase. 

We have assumed here that  is the same in both groups and that the change is only in  . This implies that the coefficients of 

variation under the null and alternative hypothesis are assumed the same. Under these assumptions, the difference in the means of 

transformed log-observations is )1log(01 f  . 

 

Hence, for the power calculations, we transform the data to logs, YX log with )1log( 2
c , and apply the result for 

case 1. We want to detect the difference )1log(01 f  . With one-sided significance  and power 1 , the 

number of observations needed in each group is 

 

)1log(
)1log(

22 2

2

2

2

c
f

zzzz
n 



















 
  


 

 

Example: Assume, for illustration, coefficient of variation 15.0c . Then 149.0))15.0(1log( 2  .Assume that we 

want to detect a 20 percent change in outcome ( 20.0f ); then 182.0)2.01log(  . Hence 

29.8)149.0(
182.0

8416.0645.1
2)1log(

)1log(
2 2

2

2

2





 












 c

f

zz
n


 

That is, we need 9 subjects in each of the two groups.  

 

 

Case 3: Cluster designs. Your sample sizes may need to be larger than what you think 

 

Assume that we study two groups, with equal variances. The earlier result (case 1) shows that the sample size for each of the two 

groups is
2

2

21 2 










 


zz
nnn . The derivation assumes that the two treatments are assigned to the experimental 

units (subjects, rats, mice) at random.  

 

Sometimes the randomization is carried out on clusters that consist of groupings of the experimental units. Clusters could be 

communities, and experimental units could be people. The randomization is at the cluster level; the treatment groups (experimental 

and control, such as absence and presence of a certain incentive) are assigned to clusters at random, and each of m experimental 
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units in a cluster is then assigned to the same treatment. While the data of interest comes from the experimental units in the two 

experimental groups, the randomization is carried out on the clusters. Usually subjects from the same cluster tend to be more alike. 

Since the observations in the same cluster are most likely correlated, with intra cluster correlation coefficient 0 , the m 

observations in a cluster don’t carry the same weight as m independent observations. Hence, in the presence of large intra cluster 

correlation it is important to randomize over many small clusters so as to maximize the efficiency of the experiment. Taking more 

and more replicates within a rather small number of clusters may not provide the desired power.  

 

Here is a theoretical justification. The variability of an experimental unit is the sum of two variances,
222
  C ; a cluster 

variance 
2
C and a unit-specific variance 

2
 . The intra cluster correlation coefficient is

22

2








C

C
. Assume that each cluster 

contains m experimental units. The cluster average has variance 
m

C

2
2   . The required number of clusters in each treatment 

group (for specified significance level and specified power at given detectable difference  ) is  
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Hence the required number of observations n (number of clusters, k, times number of observations in each cluster, m) in each 

treatment group is 
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The intra cluster correlation inflates the sample size that we obtain under complete random sampling, 
2

2

2 










  zz
, by the 

factor  )1(1  m . For 0 , we are back at our earlier result. For 1 , we multiply the sample size that we obtain under 

complete random sampling by the number of experimental units in the cluster (m). Each experimental unit in a cluster is a carbon-

copy of the other units in that cluster. The m experimental units in the cluster basically count as one unit (and not as m).Hence, in the 

presence of large intra cluster correlation, it is important to randomize over many, small clusters so as to maximize the efficiency of 

the experiment. Taking more and more replicates within the cluster doesn’t increase the power of the experiment. Taking more 

clusters does. 

 

Case 4: Sample size in the linear regression context 

 

The least squares estimate of the slope in the linear regression model,   xy , has standard error 

nse
x














 )ˆ( . One wants to select the values of x such that the standard error of the slope estimate is as small as 

possible. One usually knows the experimental region for the x's, but one needs to come up with a design for the placement of the 
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x’s. The standard error of the slope estimate is minimized if we put n/2 observations on either end of the experimental region. This 

is the most efficient (optimal) design, but leaves no room for model checking. In order to allow for checking curvature (quadratic 

effect), one wants to put at least some x’s into the middle of the experimental region. 


