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ABSTRACT 

Myopia (short-sightedness) is approaching pandemic prevalence of vast socio-

economic and public health importance in many Asian communities, with 

approximately 50% of the world population estimated to be affected by 2050. 

Several genetic and environmental factors have been implicated in the emergence 

and progression of myopia. However, what makes this disease so complex is that 

there is very little overlap in genes linked to Mendelian diseases as listed on the 

Online Mendelian Inheritance in Man (OMIM) database and single nucleotide 

polymorphisms in Genome-Wide Association Studies (GWAS). To add a further 

dimension of complexity to this disease, animal research has implicated many genes 

and proteins in the development of myopia, again, with no common genes identified 

across all platforms. What is immediately apparent is the existence of a complex 

gene-environment relationship and rather than focusing on individual genes, efforts 

should be redirected to identify biological pathways driving myopic growth. Thus, 

identifying a molecular fingerprint specific to myopia is essential to ensure early 

diagnosis and to facilitate the generation of new therapeutic avenues.  

GLOSSARY 

A2BP1: ataxin 2-binding protein 1; ABCC10: ATP-binding cassette, sub-family C 

(CFTR/MRP), member 10; ABCC5: ATP Binding Cassette Subfamily C Member 5; 

ACTB: beta (β)-actin; ACTC1: actin Alpha Cardiac Muscle 1; ACTR3B: actin Related 

Protein 3B; ACTR6: ARP6 actin-related protein 6 homolog (yeast); ACTR8: ARP8 actin-

related protein 8 homolog (yeast); AFF2: AF4/FMR2 family, member 2; AL: axial 

length; AMD: age-related macular degeneration; AMPK:  AMP-activated protein 

kinase; ANGPT2: angiopoietin 2; ANO2: anoctamin 2; APLP2: amyloid precursor- like 

protein 2; APOA1: apolipoprotein A-I; ARHGEF12: Rho guanine nucleotide exchange 

factor (GEF) 12; ARNTL: aryl hydrocarbon receptor nuclear translocator-like; ARR3: 

arrestin 3; ATE1: arginyltransferase 1; AY680578: uncharacterised AY680578; 

B3GNT5: UDP-GlcNAc, betaGal beta-1:3-N-acetylglucosaminyltransferase 5 

(B3GNT5); BDES: Beaver Dam eye study; BED: Bornholm eye disease; BGN: biglycan; 

BICC1: BicC family RNA binding protein 1; BLID: BH3-Like Motif Containing: Cell 

Death Inducer; BLIMP1: PR domain zinc finger protein 1; BMP2: bone morphogenetic 

protein 2; BMP3: bone morphogenetic

Genes, Proteins and Biological Pathways in Human and Animal Myopia 

mailto:Loretta.vocale@rmit.edu.au


Ophthalmology And Ophthalmic Surgery 

 02 

Genes, Proteins and Biological Pathways in Human and Animal Myopia. Ophthalmology And Ophthalmic Surgery. 2019; 

2(1):116. 

protein 3; BRCC3: BRCA1/BRCA2-containing complex subunit 

3; C1QTNF9B: C1q AndTumor Necrosis Factor Related Protein 

9B; C1QTNF9B-AS1: C1QTNF9B antisense RNA 1 (non-protein 

coding); CABP4: calcium binding protein 4; CACNA1D: calcium 

voltage-gated channel subunit alpha1 D; CACNA2D4: calcium 

voltage-gated channel auxiliary subunit alpha2delta 4; 

CCDC111/PRIMPOL: coiled-coil domain-containing protein 

111/Primase and DNA directed polymerase; CCNA2: cyclin 

A2; CCT5: chaperonin containing TCP1 subunit 5; CD180: 

CD180 molecule; CD226: CD226 molecule; CDH10: cadherin 

10: type II; CDH12: cadherin 12: type II; CDH6: cadherin 6: 

type II; CHD7: chromodomain helicase DNA binding protein 7; 

ChEST267a2: uncharacterised gene; ChEST49o10: 

uncharacterised gene; CHRNG: cholinergic receptor nicotinic 

gamma subunit; CLEC3A: C-type lectin domain family 3 

member A; CLIC2: chloride intracellular channel 2; cM: 

centimorgan; CNGA2: cyclic nucleotide gated channel alpha 2; 

CNGA3: cyclic nucleotide gated channel alpha 3; COL1A1: 

collagen type I alpha 1 chain; COL1A2: collagen type I alpha 

2 chain; COMMD3: COMM domain containing 3; CREM: cAMP 

responsive element modulator; CRMP-62: collapsin response 

mediator protein of relative molecular mass 62K; CRYBA4: 

crystallin beta A4; CST3: cystatin C; CSTF3: cleavage 

stimulation factor subunit 3; CTAG1: cancer/testis antigen 1; 

CTAG2: cancer/testis antigen 2; CTGF: connective tissue 

growth factor; CTNND2: catenin delta 2l; CTSH: cathepsin H; 

CUL3: cullin 3; CXORF1: chromosome X open reading frame 1; 

CYP26A1: cytochrome P450 family 26 subfamily A member 1; 

DARPP32: protein phosphatase 1: regulatory subunit 1B; DCN: 

decorin; DX1: DEAD-box helicase 1; DEPDC4: DEP domain 

containing 4; DGCR2: DiGeorge syndrome critical region gene 

2; DGKD: diacylglycerol kinase delta; DHHC14: zinc finger 

DHHC-type containing 12; DHX40: DEAH-box helicase 40; 

DLGAP1: DLG associated protein 1; DLGAP1-AS2: DLGAP1 

antisense RNA 2; DLGAP1-AS3: disks large-associated protein 

1 (DLGAP1): antisense RNA 3; DLGAP1-AS4: disks large-

associated protein 1 (DLGAP1): antisense RNA 4; DLGAP1-

AS5: disks large-associated protein 1 (DLGAP1): antisense RNA 

5; DPF3: double PHD fingers 3 

DRP2: dystrophin related protein 2; DUSP4: dual specificity 

phosphatase 4; E2F4: E2F transcription factor 4; ECEL1P2: 

endothelin converting enzyme like 1 pseudogene 2; ECM: 

extracellular matrix; EDN2: endothelin 2; EDNRB: endothelin 

receptor type B; EGR1: early growth response 1; EIF1AX: 

eukaryotic translation initiation factor 1A: X-linked; EIF2: 

eukaryotic initiation factor 2; ELF1: E74 like ETS transcription 

factor 1; ELP4: elongatoracetyltransferase complex subunit 4; 

EMILIN2: elastin microfibrilinterfacer 2; ENK: encephalin; 

ENO1: enolase 1; EPYC: epiphycan; eQTL: expression 

quantitative trait loci; ESS2: ess-2 splicing factor homolog; EST: 

expressed sequence tags; F8Bver/F8: coagulation factor VIII; 

FA: fatty acid; FCS: functional class scoring; FD: form 

deprivation; FDM: form deprivation myopia; FMOD: 

fibromodulin; FMR1: fragile X mental retardation 1; 

FRAP1/MTOR: FK506-binding protein 12-rapamycin-

associated protein 1/mechanistic target of rapamycin kinase; 

FUNDC2: FUN14 domain containing 2; GAB3: GRB2 

associated binding protein 3; GABRA3: gamma-aminobutyric 

acid type A receptor alpha3 subunit; GALNT1: UDP-N-acetyl-

alpha-D-galactosamine; GALNT11: polypeptide N-

acetylgalactosaminyltransferase 11; GALNTL5: polypeptide 

N-acetylgalactosaminyltransferase-like 5; GAPDH: 

glyceraldehyde-3-phosphate dehydrogenase; GAPLINC: 

gastric adenocarcinoma associated, positive CD44 regulator 

long intergenic non-coding RNA; GAT1: GABA transporter 1; 

GDI1: GDP dissociation inhibitor 1; GFRA1: glial cell line-

derived neurotrophic factor (GDNF) family receptor, alpha 1; 

GJD2: gap junction protein delta 2; GNB3: g-protein subunit 

beta 3; GNG13: g-protein subunit gamma 13; GNG2: 

guanine nucleotide binding protein (G protein): gamma 2; 

GOLGA8B: golgin A8 family member B; GOLPH3: 

golgiphosphoprotein 3; GP1BB: glycoprotein Ib platelet beta 

subunit; GPR135: G protein-coupled receptor 135; GPR50: g-

protein-coupled receptor 50; GRB2: growth factor receptor 

bound protein 2; GRIA4: glutamate ionotropic receptor AMPA 

type subunit 4; GRP: gastrin releasing peptide; GTF2H5: 

general transcription factor IIH subunit 5; GUCA1A: 

guanylatecyclase activator 1A; GWA: genome-wide 

association; GWAS: genome-wide association study; H2AFB3: 

H2A histone family member B3; HDGF: hepatoma-derived 

growth factor; HIPK3: homeodomain interacting protein kinase 

3; HIPPO: serine/threonine-protein kinase, HIPPO; HSP70: heat 

shock protein 70; HTR3D: 5-hydroxytryptamine receptor 3D; 

IDS: iduronate 2-sulfatase; IGF1: insulin like growth factor 1; 
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IL18: interleukin 18; IL9R: interleukin 9 receptor; IRX1: 

iroquoishomeobox 1; IRX2: iroquoishomeobox 2; KCNQ5: 

potassium voltage-gated channel subfamily Q: member 5; 

KERA: keratocan; KLH24: kelch like family member 24; KLHL6: 

kelch like family member 6; KMT2C: lysine methyltransferase 

2C; LAMA1: laminin subunit alpha 1; LAMA2: laminin subunit 

alpha 2; LAMP3: lysosomal associated membrane protein 3; 

LIM: lens-induced myopia; LINC01895: long intergenic,  non-

protein coding RNA 1895; LOC100394842: protein 

phosphatase Slingshot homolog 2; LOC100399806: 

endothelin-converting enzyme-like 1; LOC100896985: 

uncharacterized LOC100896985; LOC157627: long 

intergenic non-protein coding RNA 599 (LINC00599); 

LOC399959: uncharacterized LOC399959; LOC425969: 

loricrin-like; LPIN2: lipin 2; LRPAP1: LDL receptor related 

protein associated protein 1; LUM: lumican; MAGEA10: MAGE 

family member A10; MAP6D1: MAP6 domain containing 1; 

MCAM: melanoma cell adhesion molecule; MCF2L2: MCF.2 cell 

line derived transforming sequence-like 2; MDH: malate 

dehydrogenase; MECP2: methyl-CpG binding protein 2; 

MFN1: mitofusin 1; MIPEP: mitochondrial intermediate peptide; 

MIR124-1: microRNA 124-1; MIR3924: microRNA 3924; 

MIR4660: microRNA 4660; MIR6718: microRNA 6718; MKP-2: 

MAPK phosphatase 2; MPP1: membrane palmitoylated protein 

1; MS/MS: tandem mass spectrometry; MSRA: methionine 

sulfoxidereductase A; MSX2: mshhomeobox 2; MTM1: 

myotubularin 1; mTOR: mechanistic target of rapamycin; 

MYH13: myosin heavy chain 13; MYL12A: myosin light chain 

12A; MYL12B: myosin light chain 12B; MYO1D: myosin ID; 

MYOM1: myomesin 1; NET1: neuroepithelial cell transforming 

1; NFIL3: nuclear factor: interleukin 3 regulated; NOG: noggin; 

NSA2: NSA2: ribosome biogenesis homolog; NSDHL: NAD(P) 

dependent steroid dehydrogenase-like; NSF: N-ethylmaleimide 

sensitive factor: vesicle fusing ATPase; NT_025307.28: 

uncharacterised transcript; NT_025307.29: uncharacterised 

transcript; OGFRL1: opioid growth factor receptor like 1; 

OMIM: octanlinemendelian inheritance in man; OPN1LW: opsin 

1 (cone pigments): long-wave-sensitive; ORA: over-

representation analysis; OSBP2: oxysterol binding protein 2; 

OSBPL6: oxysterol binding protein like 6; OXPHOS: oxidative 

phosphorylation; P4HA2: prolyl 4-hydroxylase subunit alpha 2; 

PAX6: paired box 6; PCDH15: protocadherin 15; PDE3A: 

phosphodiesterase 3A; PDGFRA: platelet derived growth 

factor receptor, alpha; PDPK1: 3-phosphoinositide dependent 

protein kinase 1; PDZD2: PDZ domain-containing protein 2; 

PEDF: pigment epithelium-derived factor; PGAM1: 

phosphoglyceratemutase 1; PIK3R2: phosphoinositide-3-kinase 

regulatory subunit 2; PIMT: protein-L-isoaspartate (D-

aspartate) O-methyltransferase; PKC1: protein kinase C 1; 

PKM1: pyruvate kinase M1; PKM2: pyruvate kinase M2; 

PNUTL2: septin 4; POAG: primary open angle glaucoma; 

POLS/TENT4A: DNA polymerase sigma/terminal 

nucleotidyltransferase 4A; PPFIA2: PTPRF interacting protein 

alpha 2; PPP1R3B: protein phosphatase 1 regulatory subunit 

3B; PPP2CA: protein phosphatase 2 catalytic subunit alpha; 

PRKRIR: protein-kinase, interferon-inducible double stranded 

RNA dependent inhibitor, repressor of (P58 repressor); PRRG3: 

proline rich and Gla domain 3; PRSS56: protease, serine 56; 

PSARL: presenilin associated rhomboid like; PSMD14: 

proteasome 26S subunit: non-ATPase 14; PTCHD2/DISP3: 

dispatched RND transporter family member 3; PTPRQ: protein 

tyrosine phosphatase: receptor type Q; PTPRR: protein tyrosine 

phosphatase: receptor type R; PVALB: parvalbumin; QTL: 

quantitative trait loci; RAB11B: RAB11B: member RAS 

oncogene family; RAB22A: RAB22A: member RAS oncogene 

family; RAB39B: RAB39B: member RAS oncogene family; 

RASGRF1: Ras protein specific guanine nucleotide releasing 

factor 1; RCBTB1: RCC1 and BTB domain containing protein 1; 

RDH5: retinol dehydrogenase 5; RENBP: renin binding protein; 

RGR: retinal G protein coupled receptor; RGS6: regulator of 

G-protein signaling 6; RHOG: ras homolog family member G; 

RhoGDI: Rho GDP dissociation inhibitor (GDI) alpha; RORB: 

RAR related orphan receptor B; RP1L1: retinitis pigmentosa 1 

like 1; RPE: retinal pigment epithelium; RPLP0: ribosomal 

protein lateral stalk subunit P0; RRH: retinal pigment 

epithelium-derived rhodopsin homolog; SAG: S-antigen visual 

arrestin; SARS: seryl-tRNAsynthetase; SCO2: cytochrome c 

oxidase assembly protein; SE: spherical equivalence; SHQ1: 

H/ACA ribonucleoprotein assembly factor; SIX4: SIX homeobox 

4; SIX6: SIX homeobox 6; SLC39A5: solute carrier family 39 

member 5; SLITRK2: SLIT and NTRK like family member 2; SNP: 

single neucleotide polymorphism; SNTB1: syntrophin beta 1; 

SOX2OT: SRY-box 2 (SOX2) overlapping transcript; SPH: 

sphere; SPRY3: sprouty RTK signaling antagonist 3; SPTBN1: 
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spectrin beta, non-erythrocytic 1; STARD3NL: STARD3 N-

terminal like; SYBL/VAMP7: vesicle associated membrane 

protein 7; SYT1: synaptotagmin 1; TEX28: testis expressed 28; 

TGIF: transforming growth factor beta (TGFB) induced factor 

homeobox; TGIF1: TGFB induced factor homeobox 1; TJ: tight 

junction; TKTL1: transketolase like 1; TMLHE: trimethyllysine 

hydroxylase, epsilon; TPM3: tropomyosin 3; TRIM23: tripartite 

motif containing 23; 

TRIM29: tripartite motif containing 29; UCHL1: ubiquitin C-

terminal hydrolase L1; UHRF1BP1L: UHRF1 binding protein 1 

like; URP: heterogeneous nuclear ribonucleoprotein U like 2/; 

UTP20: small subunit processome component 20 homolog I; 

UTS2D: urotensin 2 domain containing; VBP1: von Hippel-

Lindau (VHL) binding protein 1; VCD: vitreous chamber depth; 

VIP: vasoactive intestinal peptide; WASH6P: WAS protein 

family homolog 6 pseudogenel; WT1: Wilmstumor 1; XRCC2: 

X-ray repair cross complementing 2; YEATS2: YEATS domain 

containing 2; ZC3H11A: zinc finger CCCH-type containing 

11A; ZFHX1B: zinc finger E-box binding homeobox 2; ZFR: zinc 

finger RNA binding protein; ZIC2: zic family member 2; 

ZNF275: zinc finger protein 275; ZNF644: zinc finger protein 

644; ZWINT: ZW10 interactor. 

INTRODUCTION 

Myopia (short-sightedness) is the greatest risk factor for 

blindness and other visual impairments [2-4]. The myopia 

epidemic has been associated with several lifestyle factors 

including increasing education, lack of outdoor activity and 

excessive near-work [3,5]. Myopia is prevalent in more than 

86% of adults [6] and 84% of children [7] in developed 

countries such as Taiwan and Poland, respectively. In 

communities with high educational standards, the prevalence of 

myopia is as high as 95% in university students [8], indicating 

that environmental factors such as reading and education 

influences myopia development. Myopia also tends to be 

familial [9] where an individual with myopia has a strong 

likelihood of also having a myopic parent [9-15]. Evidence for 

an environmental contribution in refractive error development 

has grown exponentially since 1975 when the first Singapore 

and Australian studies appeared (reviewed in [16]) suggesting 

that both genetics and environmental components are likely to 

contribute to the development of myopia. 

EVIDENCE FOR A GENETIC CONTRIBUTION 

Genetic linkage studies have confirmed Mendelian inheritance 

of 25 myopia loci for which the underlying molecular basis is 

not known. Further attempts have utilised Genome-Wide 

Association Studies (GWAS) to determine whether a set of 

genetic variants (ie. single-nucleotide polymorphisms) in 

individuals within a population are associated with the 

observed changes in myopic axial growth or Spherical 

Equivalent (SE) refraction. These studies have identified genetic 

sequence variations in several potential candidate genes that 

may offer genetic susceptibility to myopia. Interestingly, this 

genetic susceptibility can only account for between 8-50% of 

the variation of the condition [17-20], fuelling the long-

standing nature vs nurture debate. Given that myopia is 

prevalent in homogenous genetic populations (ie. Eskimo/Inuit 

[21-27], and that visual experience can be manipulated in 

animals using occlusion [28-30], environmental factors are well 

accepted as playing a major influence on the development of 

myopia and high myopia.  

Animal models of experimental myopia illustrate the impact of 

manipulating the visual environment. Both negative lens wear 

and Form Deprivation (FD) induce changes in gene expression 

changes which parallel axial elongation, increased vitreal 

volume and thinning of the retina and choroid [30-33]. These 

morphological changes are similar to those seen in profound 

human myopia [34,35]. Indeed animal studies have proved 

vital to understanding the molecular fingerprint of refractive 

development with the adaptive response to environmental 

visual manipulations showing remarkable similarities to 

differential gene pathways in humans [36,37]. Large-scale 

transcriptomic and proteomic animal studies have implicated 

hundreds of Differentially Expressed Genes (DEGs) and 

Differentially Abundant Proteins (DAPs) as causative of 

environmentally-induced myopic growth; however, it is rare 

that a single gene or protein is solely responsible for a disease 

or phenotypic variation. This is particularly noteworthy in 

biological systems built on redundant genomes susceptible to 

genetic drift [38,39], especially those that are susceptible to 

post-translational modifications and epigenetic regulation [40-

44]. Furthermore, pathway enrichment analysis is also proving 

to be an invaluable tool in interpreting how these DEGs and 

DAPs interact with each other within a complex biological 

system. 
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Despite the extensive amount of non-correlative data from 

human and animal studies, commonalities in genes and proteins 

in human and animal myopia exist, suggesting that the 

biological basis of refractive error development is conserved 

across species (Figure 1) [36].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus the aim of this review is to outline the evolution of human 

genomic research and animal transcriptomic and proteomic 

research and explain the importance of assessing the collective 

changes in genes and proteins (ie. biological processes) in the 

adaptive response to environmentally-induced myopia. 

EVIDENCE FROM GENETIC LINKAGE STUDIES AND GWAS 

Myopia can be considered a heterogenous condition, with 

family-based linkage approaches highlighting that myopia 

may follow Mendelian inheritance patterns; Autosomal 

Dominant (AD), Autosomal Recessive (AR), and X-Linked 

Recessive (XLR) inheritance. Linkage analysis has allowed for 

the identification of 25 myopia loci (MYP1-MYP3, MYP5-

MYP26) along with several potential candidate genes 

responsible for the disease. GWAS have aided in assessing 

several additional susceptible loci and Single Nucleotide 

Polymorphisms (SNPs) for refractive error development. These 

studies are reviewed below. 

MYP1: The first of the genetic linkage studies on myopia was 

conducted in when Bartsocas and Kastrantas [45] demonstrated 

a convincing X-linked pedigree of myopia inheritance in which 

five myopic grandsons were descendent from three myopic 

brothers. Although within this family, some of the females had 

mild myopia not requiring corrective glasses. This inheritance 

pattern was also shown in a population of Asian Indians in 

which only males were affected by myopia [46] suggesting 

that the pedigree pattern was consistent with X-linked recessive 

inheritance, with full penetrance. The 1.25Mb genomic interval 

was identified on chromosome Xq28 which contains multiple 

candidate genes for high-grade myopia including cancer/testis 

antigen 2 (CTAG2), growth factor receptor bound protein 2 

(GRB2)-associated protein 3 (GAB3) membrane palmitoylated 

protein 1 (MPP1), coagulation factor VIII (F8Bver/F8), FUN14 

domain containing 2 (FUNDC2), von Hippel-Lindau (VHL) 

binding protein 1 (VBP1), ras-related protein Rab-39B 

(RAB39B), chloride intracellular channel 2 (CLIC2), trimethyl 

lysine hydroxylase, epsilon (TMLHE), vesicle associated 

membrane protein 7 (SYBL/VAMP7), interleukin 9 receptor 

(IL9R), sprouty homolog 3 (SPRY3) and CXYorf1 (WAS protein 

family homolog 6, pseudogene (WASH6P). These finding were 

not confirmed in a later, larger scale study [47] nor have they 

been found to be involved in the pathogenesis of the MYP1 

phenotype in the Asian Indians pedigrees [46].  

Other genes within this locus were shown to be associated with 

high myopia. Variants in the opsin gene were observed in the 

Bornholm Eye Disease (BED) phenotype [48-50]. A 28-kb 

intergenic deletion was observed between a BRCA1-BRCA2-

containing complex 3 (BRCC3) gene in males on top of an 8-kb 

intergenic duplication between SPRY3 and TMLHE genes [49]. 

In both pedigrees (ie. BED & Minnesota), as well as a UK 

sample, copy numbers of the gene, testis expressed 28 

(TEX28), was significantly reduced by half compared to female 

controls. Other candidate genes within the MYP1 locus (CTAG1, 

CTAG2, MPP1, CLIC2, H2AFB3, TMLHE, SPRY3, SYBL (VAMP7), 

NT_025307.28, NT_025307.29, AFF2, CXORF1, MECP2, 

MTM1, RENBP, GABRA3, GDI1, MAGEA10, NSDHL, TKTL1, and 

ZNF275) or adjacent to the Xq28 locus (FMR1, IDS, SLITRK2, 

 

Figure 1: Venn diagram showing the total number of 
common genes identified in Mendelian diseases of myopia, 
GWAS and animal transcriptomic and proteomic studies. 

Genes associated with mendelian myopia were 
downloaded from the OMIM database 

(https://www.omim.org/). Genes significantly (p ≤ 5*10-8) 
associated with myopia susceptibility as identified in 
GWAS were downloaded from the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/). Differentially expressed 
genes and differentially abundant proteins were collected 
from Riddell & Crewther [36] and original papers where 
possible. Animal genes and proteins were converted to 

human orthologs to aid comparisons. 
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SLITRK2) were found not to be associated with the disease 

status [49]. 

In Han Chinese males, sequence analysis of the GPR50, PRRG3, 

CNGA2, and BGN genes failed to detect any mutations. These 

genes did however show sequence variations that could alter 

gene function [51]. Additionally, two rare variants in the 

OPN1LW were detected in the proband using sequencing [52] 

suggesting a role for colour discrimination [53] and cone 

phototransduction [54] in high-myopia. 

In fact, individuals with Xq28 duplication syndrome manifested 

with myopia, autism spectrum disorder, cognitive impairment, 

and behavioural problems [55,56]. 

MYP2: The MYP2 locus (18p11.31) has been identified in 

several multigenerational families in the USA [57] and Hong 

Kong Chinese [58] with an autosomal pattern of inheritance of 

high myopia (greater than -6D). However this same locus has 

not been identified in the Beaver Dam Eye Study [59], or in a 

UK [60], Japanese [61], Amish or Ashkenazi Jew [62] 

population of high myopes. Further haplotype analysis 

identified an interval of 0.8cM between markers D18S63 and 

D18S52 [63] and later revised to a 2.2cM interval between 

D18S52 and D18S481 [64] to be significantly associated with 

high myopia. Genes mapping to the extended region include 

DLGAP1, DLGAP1-AS2, DLGAP1-AS3, DLGAP1-AS4, 

DLGAP1-AS5, GAPLINC, LINC01895, MIR6718, MYL12A, 

MYL12B, MYOM1 and TGIF1. However associations between 

TGIF, EMILIN2, MYL12B, DLGAP1, LPIN2, MYL12A, MYL12B, 

MYOM1 and high myopia were not supported in subsequent 

validation studies [64-67]. LPIN2 was also identified as a 

potential candidate gene implicated in myopia with 11 

nucleotide variants detected in both highly myopic and 

unaffected individuals however these polymorphisms did not 

result in functional changes in the protein [68]. Polymorphisms in 

the LAMA1 gene showed contradictory results. Sasaki et al. 

[69] did not identify any significant LAMA1 SNPs associated 

with high myopia. Comparatively, Zhao et al. [70]  showed that 

the polymorphism rs2089760, located in the promoter region 

of LAMA1, was associated with high myopia in a Chinese 

population.  

Interestingly, a female with de novo deletion of the short arm 

of chromosome 18 displayed marked phenotypic features 

including developmental delay, facial dysmorphism and 

myopia suggesting that genes on chromosome 18 may 

predispose individuals to developing myopia. The 143 genes 

located in this proband primarily code for proteins involved in 

regulation of expression and transcription processes, cellular 

growth, regulation of chromosome division (mitosis), 

carbohydrate and triglycerides metabolism, and cell adhesion 

[71]. 

MYP3: Young et al. [57] demonstrated a link between 

autosomal dominant high-grade myopia (-6.0D) and 

chromosome 12q21-q23 in a large German/Italian family. The 

locus was later refined to 12q21-q21.31 [72-74] and later 

confirmed by whole-genome SNP-based linkage [47,75]. 

Although, Li et al. [47] noted that the interval of 9.94cM 

(12q21.31-22) in their study encompassed a multiethnic 

dataset of Caucasian, Asian & African-American participants. 

Indeed, Farbrother et al. [60] and Ibay et al. [62] did not find 

significant associations between this locus and familial high 

myopia. This could possibly be due to the different refractive 

error characteristics used in the analysis (ie. sphere (SPH) and 

SE). The original 30.1cM interval on 12q21-q23 extended 

from marker D12S1684 to D12S317 and contained 

approximately 229 genes. Whereas the refined interval 

narrowed to a composite region with only 34 genes. Within this 

region, several candidate genes were identified such as insulin 

growth factor 1 (IGF1), lumican (LUM), fibromodulin (FMOD), 

decorin (DCN), synaptotagmin 1 (SYT1) and keratocan (KERA). 

Mutant lumican transgenic mice displayed significantly larger 

axial length measures compared to wild-type mice, possibly by 

disrupting the formation of collagen fibrils resulting in changes 

to the elasticity and tension of the sclera [76]. 

Interstitial deletion of chromosome 12q15-q23 has been shown 

to result in corneal/scleral abnormalities but not in altering 

axial length suggesting that the gene responsible for myopia 

may not be located within this deleted locus, even with the loss 

of several important structural genes such as DCN, LUM and 

KERA [77]. Polymorphisms in proteoglycan genes at MYP3 

(FMOD, DCN, LUM, KERA, and epiphycan (EPYC)) were also 

not associated with high myopia in a Chinese population [78] 

or in two US families [64,79], and hence, are unlikely to be 

major contributors to the genetic predisposition to high myopia. 

Polymorphisms in IGF1 did show strong association with high 

grade myopia as measured by SPH and SE [80] with the 
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functional consequence of this variation more likely to have 

downstream direct effects on regulating gene expression 

rather than a direct factor in myopia development. Other 

genes linked to high-grade myopia within the MYP3 region 

include UHRF1BP1L, PTPRR (PTPRQ), PPFIA2, DEPDC4, ACTR6, 

and UTP20. These genes are more likely to regulate the 

expression of other genes that contribute to axial growth [81]. 

MYP5: The MYP5 locus was identified as autosomal dominant 

in a multigenerational English/Canadian family by Paluru et al. 

[82] but as autosomal recessive in a UK family [60]. Haplotype 

analysis refined the critical interval to a 7.71cM region on 

17q21-q22, between markers D17S787 and D17S1811. Out 

of the 536 genes in this region, efforts have focused on 

validating only a few of these genes. Polymorphisms in the 

main candidate gene, COL1A1 were identified to be strongly 

associated with high myopia in a Japanese [83] and Caucasian 

[84] populations.  Although contradictory studies suggest that 

COL1A1 is weakly associated with the disease and is not a 

high genetic risk factor for myopia [84-91]. No other 

candidate genes within this loci have been suggested or 

validated thus far.  

MYP6: While considerable efforts have been made to identify 

a susceptibility locus for high-myopia, Stambolian et al. [92] 

identified a susceptibility locus related to mild/moderate 

myopia (> -1.0D) in American families of Ashkenazi Jewish 

descent. The findings indicated that a region on chromosome 

22 (22q12), at marker D22S685, was strongly linked to mild 

myopia. These findings were later confirmed in the Beaver 

Dam Eye Study [93] and in a large multiethnic cohort [46]. One 

gene within this region suggested to be implicated in myopia 

development is cytochrome c oxidase assembly protein 

(SCO2). A heterozygous nonsense mutation in the SCO2 gene 

was identified in a family of European decent (average 

spherical refractive error of -22D). These finding were then 

validated in a mouse model of Lens Induced Myopia (LIM) [94], 

confirming that SOC2 localises in the retina and sclera but both 

mRNA and protein were significantly reduced in experimental 

myopia. 

MYP7, MYP8, MYP9 and MYP10: The MYP7-MYP10 loci were 

identified by Hammond, Andrew, Mak, and Spector in a study 

encompassing dizygotic (DZ) twin pairs. The regions identified 

to be associated with myopia included chromosomes 11p13 

(MYP7), 3q26 (MYP8), 4q12 (MYP9), and 8p23 (MYP10) 

which were supported in a later study [95]. Stambolian et al. 

[95] also refined the loci intervals to D3S1262 to D3S3053 on 

chromosomes 3q26 and D8S1130 to D8S1469 on chromosome 

8p23. Although chromosome 11p13 and 8p26 were found to 

be associated with myopia, later reports suggested no 

evidence of linkage of these regions with myopia [96,97]. 

However, Andrew et al. [98] did replicate the initial linkage to 

3q26 and identified SNPs in 2 potential candidate genes 

(MFN1 & SOX2OT) and in the PSARL gene region (LAMP3, 

MCF2L2, B3GNT5, KLHL6, KLH24, YEATS2, MAP6D1, PSARL, 

ABCC5 and HTR3D). 

Interestingly, individuals with proximal 11p deletion syndrome 

(P11pDS) [99], interstitial deletion in the long arm of 

chromosome 11 [100], interstitial deletion of region 3p26 

[101] or proximal deletion of chromosome 4q12-21.21 [102] 

displayed marked phenotypic features including brain 

abnormalities, developmental delay, facial asymmetry, and 

severe myopia (-10D). These deletion studies indicate that 

there are genes in these regions that regulate, or are directly 

involved in, the development of myopia. Some of the potential 

candidate genes within the 11p13 region include CSTF3, ELP4, 

HIPK3, PAX6, WT1 [103] however, only PAX6 has been 

determined to be associated with myopic development 

[12,104] leaving a substantial number of genes unvalidated. 

GWAS in a French population provided evidence for the 

association of chromosome 8p23 with high myopia, with 

potential candidate genes MIR124-1, MIR4660, MSRA and 

PPP1R3B [105]. 

MYP11: The MYP11 locus was identified as an autosomal 

dominant form of high myopia in a large Chinese family. The 

linkage region maps to a 20.4cM interval on chromosome 

4q22-q27, between markers D4S1578 and D4S1612 [106] 

which overlapped the linkage peaks 4q21-q22 [73], 4q24 

[47], 4q25 [107] and 4q27-q28 [95] identified in later 

GWAS and meta-analyses. One potential candidate gene, 

(Retinal Pigment Epithelium-Derived Rhodopsin Homolog, RRH) 

was sequenced but no mutations were identified in the gene 

suggesting that this gene was not a causative factor in myopia 

development [106]. No other candidate genes have been 

identified thus far however, a number of Expressed Sequence 

Tags (ESTs) are located within this region, one of which 
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(BI480957) has been reported to be expressed in the native 

human Retinal Pigment Epithelium (RPE) [107]. 

MYP12: The locus on chromosome 2q37.1 was discovered by 

Paluru, Nallasamy, Devoto, Rappaport, and Young in a large 

USA family of Northern European decent. The link between 

MYP12 and high myopia was supported in subsequent studies 

[47,108,109] although many additional regions surrounding 

2q37.1 have been implicated in the condition [47,109]. 

Individuals with 2q partial trisomy exhibit ocular abnormalities 

including reduced visual function and severe myopia (-6.0D) 

[110]. Two candidate genes, S-antigen (SAG) and 

Diacylglycerol Kinase-Delta (DGKD), were sequenced however 

these genes were found not to be a causative factor in myopia 

[111]. Although GWA studies have identified CHRNG, 

ECEL1P2 (20) and PRSS56 [112] to be significantly associated 

with myopia but no other genetic variants within this region 

were found [109]. 

MYP13: The MYP13 locus was identified in a Chinese family 

for which 6 of the males had high myopia ranging from -7D to 

-16D that seemed to be inherited in an X-linked recessive 

pattern [113]. Red-green colour vision defects were also 

prominent in this family however it was found not to co-

segregate with the myopia phenotype. Haplotype analysis 

identified conserved changes between DXS1210 and 

DXS8057 on chromosome Xq23-q25 (interval of 25cM 

(14.9Mb)) [113]. The same lab confirmed these findings and 

extended the identified locus to Xq25-q27.2 between 

DXS1001 and DXS8043 [114] with no potential candidate 

genes identified. 

MYP14: Wojciechowski et al. [115] performed linkage analysis 

in a population of Ashkenazi Jewish families and identified an 

11Mb region on chromosome 1p36 between markers D1S552 

and D1S1622 which was later refined to 1p36.1 [73]. Two 

candidate genes have been proposed; FRAP1/MTOR and 

PTCHD2/DISP3. FK506 binding protein-rapamycin complex-

associated protein 1 (FRAP1/MTOR) was strongly associated 

with corneal curvature but not myopia [116]. Whereas, the 

gene, dispatched RND transporter family member 3 

(PTCHD2/DISP3), was found to be strongly associated with SE 

[112]. 

MYP15: A critical region of 2.67cM on chromosome 10q21.1 

was found to be strongly associated with high-grade myopia in 

a large Hutterite family from South Dakota [117]. GWAS 

confirmed a strong association for this region with high myopia, 

identifying four potential candidate genes (BicC family RNA 

binding protein 1 (BICC1) (20), ZW10 interactor (ZWINT), 

microRNA 3924 (MIR3924) [105] and protocadherin 15 

(PCDH15)), although direct sequencing of the coding regions of 

these genes did not reveal myopia-implicated mutations. 

MYP16: Lam et al. [118] investigated the genetic component 

of autosomal dominant high myopia in a family of Hong Kong 

Chinese. Haplotype analysis indicated the linkage region to be 

5p15.33-p15.2 with a 17.45cM interval which was confirmed 

in a later study [47]. Five potential candidate genes (IRX2, 

IRX1, POLS/TENT4A, CCT5, and CTNND2) within this region 

were screened for sequence variants with several 

polymorphisms identified however no associations between 

these variants and high myopia were found [118]. Subsequent 

analysis of the CTNND2 in a Asian population confirmed the 

association between CTNND2 and high myopia, but suggested 

that this SNP may associate with moderate myopia in the 

Chinese population [119,120]. 

MYP17 (formally MYP4): The MYP17 locus was identified in a 

population of French and Algerian families to be associated 

with an autosomal dominant form of high-grade myopia (-6D) 

[121]. The analysis indicated that the 11.7cM linkage region 

was on chromosome 7q36, from marker D7S798 to D7S2423 

with D7S2423 located close to the telomere [49,121]. 

However, many studies have not been able to reproduce these 

findings. Rather, the most significant locus associated with high-

myopia on chromosome 7 seemed to be 7q11.23-7q21.2 [74], 

7q21-q22 [82,93,95], 7p14 [73] and 7p15 [60,96,122]. 

Although no candidate genes have been identified from this 

locus, an individual with chromosome 7q36.1q36.2 triplication 

presented with developmental delay, growth retardation and 

severe myopia [123]. Candidate genes in the triplicated region 

include GALNTL5, GALNT11, KMT2C, XRCC2, and ACTR3B 

[123] suggesting that epigenetic transcriptional activation, cell 

structure and the Notch signaling pathway may be implicated 

in myopia. Interestingly, the symbol MYP4 was originally used 

for the locus on 7p15 but has been renamed to MYP17 [122]. 

MYP18: This locus was associated with autosomal recessive 

inheritance of extreme myopia (-13D) and axial growth 

(28.36mm) in three siblings from a Chinese family. Fine 
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mapping and haplotype analysis provided strong evidence for 

a 25.23Mb region between markers D14S984 and D14S999 

on chromosome 14q22.1-q24.2. The clinical presentation was 

similar in the affected siblings and included a tigroid fundus, a 

circular choroidal defect around the optic disc and a mild 

reduction in the amplitude of cone response, although all 

patients had normal colour vision and normal thickness of the 

retinal layers [124]. Potential candidate genes in this linkage 

interval include guanine nucleotide binding protein (G protein), 

gamma 2 (GNG2), G protein-coupled receptor 135 

(GPR135), SIX homeobox 4 (SIX4), and regulator of G-protein 

signaling 6 (RGS6). Interestingly, GWAS has also identified 

associations between the gene involved in eye development, 

SIX homeobox 6 (SIX6), and high myopia (20).  

MYP19:  Ma et al. [125] investigated the genetic component 

of autosomal dominant high myopia (-11.6D) in a Chinese 

family. Linkage analysis indicated the linkage region to an 

approximately 11.69cM (14.14Mb) interval between 

D5S2096 and D5S1986 on chromosome 5p13.3-p15.1 which 

was later confirmed by Abbott et al. (2012). Six candidate 

genes were also assessed including cadherin 6, type II (CDH6), 

cadherin 10, type II (CDH10), cadherin 12, type II (CDH12), 

PDZ domain-containing protein 2 (PDZD2), Golgi 

phosphoprotein 3 (GOLPH3), and zinc finger RNA binding 

protein (ZFR). These candidate genes have roles in cell 

adhesion, intracellular signal transduction, protein trafficking, 

and DNA/RNA binding activities which are some of the 

functions most likely to be associated with myopia. However, 

mutation analysis of these genes did not reveal any disease-

causing mutation within these genes [124]. 

MYP20: A GWA study of ~500K SNPs were assessed in a 

population of Han Chinese with high myopia (-12D) [125]. 

After adjusting for genomic control, gender, and age, the study 

identified 34 SNPs with a highly significant association 

between SNP rs9318086 at chromosome 13q12.12 and high 

myopia. Four of the most significant SNPs associated with 

myopia included rs9318086 and rs1886970 located in intron 

10 and intron 14, respectively, of the mitochondrial 

intermediate peptide gene (MIPEP). And rs7325450 and 

rs7331047 located in intron 4 of the C1q and Tumor Necrosis 

Factor Related Protein 9B (C1QTNF9B) gene [126].   

MYP21: Exome sequencing and segregation analysis identified 

a missense mutation in the ZNF644 gene located at 1p22.2 to 

be responsible for the autosomal dominant inheritance of high 

myopia (-6D) in a Han Chinese population [127], US cohort 

[128] and Chinese population [129-131]. All the family 

members reached high myopia by age 7 (-11D to -20D) with 

three of the elderly family members presented with thinning of 

the RPE and the choriocapillaries [127]. 

MYP22: An autosomal dominant form of high myopia (-20D) 

was identified in Chinese family spanning 4 generations [132]. 

Exome sequencing within this family identified a missense 

mutation in the CCDC111/PRIMPOL gene located on 4q35.1. 

This variation was found to only segregate with myopia in this 

family and was absent in 270 non-myopic Chinese individuals 

[132]. Although, due to the variation in severity of the clinical 

phenotype among the affected individuals, the authors 

concluded that environmental influences were likely to 

contribute to the aetiology in the family. 

MYP23: Extreme myopia (-17D) in 3 consanguineous Saudi 

Arabian families was associated with loss of function mutations 

in the LRPAP1 and CTSH genes on chromosome 4p16.3 [133]. 

The mutations identified in this family segregated fully with 

myopia and were not identified in 210 Saudi exome files or in 

the SNP databases of the 1000 Genomes Project or Exome 

Variant Server. Later studies confirmed the role of LRPAP1 in 

early onset myopia [129,134,135]. 

MYP24: Guo et al. [136] performed whole-genome linkage 

analysis on a Chinese family with severe myopia (ranging from 

-5D to -25D) and identified chromosome 12q13.3 as 

significantly associated with the disease. Two SNPs rs774033 

and rs10122 in the SLC39A5 gene segregated fully with 

disease in the family and was not found in 1,276 population-

matched controls [136]. Variants in SLC39A5 were found to be 

associated with early-onset high myopia [129] and high 

myopia (<-6D) [134,137,138]. Interestingly, individuals with 

12q13.2-q13.3 Microdeletion Syndrome present with 

neurodevelopmental delay, facial dysmorphia bone 

malformations and severe myopia. Further analysis revealed 

deletion of a total of 26 genes. Expression analysis revealed a 

50% reduction in expression of these genes [137]. 

MYP25: This locus was identified in a Chinese family with 

severe myopia (ranged from -6D to -20D) [139]. Linkage 
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analysis identified 4 candidate regions on chromosomes 1, 5, 

6, and 21. Whole-exome sequencing identified a missense 

mutation in the prolyl 4-hydroxylase subunit alpha 2 (P4HA2) 

gene located on chromosome 5q31.1, that segregated fully 

with disease in the family and was not found in 626 

population-matched controls or in public variant databases 

[139]. Mutations in P4HA2 were shown to result in decreased 

mRNA expression and protein abundance in Caucasian 

individuals with mild-moderate myopia [140].  

MYP26: Early-onset myopia in three large Chinese families 

was found to be significantly linked to marker DXS986 on 

chromosome Xp11.1-q13.3 [141] similar to earlier reports 

linking marker DXS6800 on chromosome Xq13-q21 to high 

myopia in an Amish family [95]. Whole-exome sequencing 

identified a missense mutation in the arrestin 3 (ARR3) gene 

which was found to segregate fully with disease in each of the 

families and which was not found in 192 controls or in public 

variant databases. Analysis of the whole-exome data did not 

identify mutations in other high myopia- or retinal disease-

associated genes [141]. 

On the other hand, several studies have found other candidate 

loci using linkage disequilibrium analysis. A candidate locus for 

high myopia was located outside the MYP2 region on 

chromosome 18q12.2 at marker D18S0301i with the gene 

GALNT1 (UDP-N-acetyl-alpha-D-galactosamine), closest to this 

microsatellite marker [61]. Paluru et al. [79] presented 

evidence of suggestive linkage to chromosome 1q23-32 

(markers D1S484, D12S1583, and D12S79). Chromosome 

11p exhibited significant linkage of myopia in a Caucasian 

population [142]. Individuals with interstitial 3p12.3-13 

deletion presented with myopia suggesting that genes at this 

loci may be important to the development of myopia [143]. 

Yang et al. [124] noted that linkage to regions of chromosomes 

11 and 17 could not be excluded in a Chinese family. Finally, 

evidence for linkage of ocular axial length to 14q32 was 

found by Zhu et al. [74] which is a locus to which a recessive 

form of isolated microphthalmia has been mapped [144]. 

Although, these studies can only account for up to 50% of the 

variation in myopia, it is important to note that there is lack of 

significant sharing of cis-expression quantitative trait loci 

(eQTLs) between blood and other tissues [145,146], making it 

necessary to analyse the transcriptome in affected tissue (ie. 

retina/RPE/choroid) to validate the findings from these GWAS 

and genetic linkage studies. What is immediately apparent is 

that the genes associated with myopia susceptibility are closely 

linked to those involved in neurodevelopment and 

dysregulations of these genes result in subsequent cognitive 

impairments, highlighting a potential avenue for research into 

this disorder. All in all, these studies have been crucial in 

understanding the genetic basis of myopia development even 

though environmental factors and epigenetic changes may 

eventually prove more relevant to the aetiology of myopia. 

ADDITIONAL LOCI ASSOCIATED WITH MYOPIA 

SUSCEPTIBILITY (GWAS) 

In addition to the linkage disequilibrium analysis, SNP studies in 

humans have identified several potential myopia susceptibility 

loci and genes (Supplementary Table 1), however few variants 

have been validated in animal or other studies. Studies using 

GWAS have identified several high-risk variants on many loci 

in specific populations.  

Asian: The most widely studied myopic individuals are from 

Asian populations. This population is targeted as the 

prevalence of myopia is high, with up to 95% of university 

students within this population diagnosed with myopia (< -

0.50D) [8]. Interestingly, GWAS has revealed that the genetic 

variations associated with myopia across many Asian 

populations also differ. In Japanese populations, the 11q24.1 

locus and two candidate genes, BLID and LOC399959, in 

particular have been found to be associated with high myopia 

(<-6D) [147]. However these associations were not significant 

in a population of Han Chinese [148]. In a population of Han 

Chinese, the 13q12.12 region was found to be associated with 

high myopia, particularly as the rs9318086 and rs1886970 

are in intron 10 and intron 14, respectively, of MIPEP gene. 

Indeed, rs9318086 may also affect the following genes; 

C1QTNF9B (also called RP11-45B20.2), and C1QTNF9B 

antisense RNA 1 (non-protein coding) (C1QTNF9B-AS1) [125]. 

Several SNPs within 4q25 were also found to be strongly 

associated with high myopia (≤-8D) with the most significant 

SNP being rs10034228 which is not within, or adjacent to any 

known genes. However, the predicted protein sequence for 

which the SNP is located is highly similar to that of the tubulin 

family [149] highlighting a role for structural proteins in the 

myopia phenotype. In a meta-analysis of studies in Singapore, 
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China (Sichuan), Hong Kong and Japan, 2 loci were found to 

be associated with severe myopia (AL ≥26mm or SE of at least 

-6D) with genetic variations within zinc finger E-box binding 

homeobox 2 (ZFHX1B; also known as ZEB2; rs13382811) and 

Syntrophin, Beta 1 (SNTB1; rs6469937) the likely causative 

mutations. Khor et al. [150] also assessed the mRNA levels of 

ZEB2 and SNTB1 using myopic mice and found that these genes 

were both significantly downregulated in myopic retina/RPE 

compared with naive control retina/RPE [150]. These data 

provide support for the involvement of these genes in playing 

a role in myopic eye growth at the transcriptome level. 

Caucasian: The genetic variants in Caucasian populations of 

European ancestry have shown commonalities to Asian-based 

population studies in the mechanisms controlling ocular growth. 

Solouki et al. [151] focused on 31 SNPs spread across four loci 

on chromosomes 15q14, 14q24, 1q41 and 10p12.3 in five 

separate cohorts RS-I, RS-II, RS-III and the Erasmus Rucphen 

Family Study from The Netherlands, and a twin study from the 

United Kingdom. Meta-analysis of the combined discovery and 

replication cohorts showed a significant association between 

refractive errors (as measured by SE) and the locus on 15q14. 

The identified locus on 15q14 is within an intergenic region 

near the genes GJD2 (39 kb from rs634990 at its 3′ end), 

ACTC1 (74 kb from rs634990 at its 3′ end) and GOLGA8B 

(180 kb from rs634990 at its 5′ end).  It may be that the SNPs 

within the regulatory elements at 15q14 may promote 

transcription of genes in the area and increase the production 

of ACTC1 and GJD2 mRNA. 

In another study on a population of British twins [152], SNPs in 

the RASGRF1 promoter region at chromosome 15q25 were 

significantly associated with high myopia (based on SE). The 

strongest evidence of association was found for rs939658 and 

rs8027411 with an extra copy of the myopia susceptibility 

allele (G and T for the two SNPs, respectively) altering the SE 

by 0.15D. These varients fall within the transcription initiation 

site of RASGRF1. Validation of this gene in mice knockdown 

models showed that the lack of expression in RASGRF1 

resulted in a morphologically normal retina but caused 

pronounced deficiencies in the lens, photoreception and visual 

sensory processes without any other obvious sensory 

impairments [153,154]. In Ashkenazi Jews, three loci were 

found to be associated with myopia (≤ -1D) eg. 6q22-q24, 

11p14-q14 and 20p12-p11 [155]. 

In the Beaver Dam Eye Study (BDES; Wisconsin, USA), there 

was strong evidence of myopia linkage to chromosome 22q11 

(rs737923) which is adjacent to the gene, ess-2 splicing factor 

homolog (ESS2). ESS2 has been shown to modulate 

transcription factors and forms part of the splicesome complex, 

suggesting that ESS2 may function in regulating mRNA 

processing of genes involved in the myopia pathology [156]. 

Other studies utilising the BDES population have discovered 

linkage between SE and loci 7q36 [49] which is consistent with 

findings by Naiglin et al. [121] in French and Algerian families. 

Additionally, chromosome 7q15, 2q12, 4q26, 4q31, 6q15, 

12q24, 2q25, 16q24 provided evidence of linkage to 

refraction in the BDES [49,91]. 

While most studies have focused on the association between SE 

or SPH and myopia, Mishra et al. [157] have shown corneal 

curvature to be highly associated with myopia susceptibility. 

Corneal curvature was found to be linked to rs2114039 in 

platelet derived growth factor receptor alpha (PDGFRA) and 

rs2444240 in tripartite motif containing 29 (TRIM29) in 

individuals of European ancestry within an Australian 

population.  

Other loci linked to myopia susceptibility include 2q37.2-37.3, 

[108], 1p31.3, 2q33.1, 3q29, 10p11.21-11.22, 6q13-

16.1,5q35.1-35.2, 7q11.23-21.2 [75], 5q14.2, 6q14.1, 

10q25.3, 14q32, 6q15 [74], 4q21-22, 7p14 [73], 1p23-24, 

7q21, 12q24, 20q13, and 8p22-23 [95]. Loci on chromosome 

11 and 17 are also likely to offer susceptibility to myopia in 

humans. Other candidate genes located on 22q (outside MYP6 

locus) were assessed for polymorphisms and association with 

myopia. DGCR2, GP1BB, CRYBA4, and PVALB with 

rs2071861, rs2239832 and rs2009066 SNPs of CRYBA4 

showing the most significant association to high myopia in 

southern Chinese [158]. More recently, five SNPs in the 

potassium voltage-gated channel subfamily Q member 5 

(KCNQ5) gene were associated with high myopia susceptibility 

in a Chinese population [159]. 

The large number of potential susceptibility loci and SNPs not 

only raises interesting questions about the role of genetics in 

the development of myopia, but of the robustness of the results 

and statistical power of these studies. The phenotypic variance 
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of refractive error varies by study from 3% (20), 8% [19], 

12% (18; 20), 25-35% [160], to 50% [17] As noted by Klein 

et al. [161], these studies need to be taken with a great deal 

of caution as it is likely that most historic genome-wide scans 

based on STR markers and linkage approach were 

underpowered to detect true effects and also very prone to 

false-positive findings. Additionally, the complexities of 

associating a SNP with a specific disease process provides little 

assurance that these associations will occur for differing ethnic 

and/or genetically distinct populations.  

DEG, DAPS AND OVER-REPRESENTATION ANALYSES IN 

ANIMAL ‘OMIC’ STUDIES 

Over the last decade there have been many large discovery 

type ‘omic’ studies examining the transcriptomic and proteomic 

basis of environmentally altered eye growth in animal models 

of refractive error development (summarised in Supplementary 

Table 2). The most common is the chicken as the rapid eye 

growth observed in response to visual manipulation (eg. with 

form deprivation myopia, FDM) reaches severe myopic levels  

(-9D) in 5 days [162], and develops to as much as -20D after 

2 weeks [28-30,163]. In contrast, primates and mice require 

much longer periods to produce smaller degrees of FDM 

(marmoset: 4.5 weeks, -8D, [164]; macaque: 17 weeks, -5D, 

[165]; mice 56 days, -2.5 [166]. Regardless of the animal 

model used in large transcriptomic and proteomic studies on 

refractive error development, all have identified hundreds of 

differentially expressed genes and proteins as potential 

candidate genes for environmentally altered eye growth. 

Chicken: One of the first transcriptomic studies [167] in 

chickens utilised microarray technology to assess differentially 

expressed genes in retina/RPE of the chick model of FDM. A list 

of 15 genes were differentially expressed after 6h of Form 

Deprivation (FD) with two growth factors (BMP2 and CTGF) 

identified as genes most likely to play a role in the onset of 

myopia. In contrast, signaling molecules (IL18, VIP, URP), MKP-

2, and EDNRB were considered to be more likely to play a role 

in maintaining ocular growth after 3 days of FD [167]. 

Interestingly, Rada and Wiechmann[168] measured changes in 

the immune-related transcriptome in response to prolonged FD 

and FD recovery. Of the 14 immune-related genes identified, 

ATH and ovotransferrin were upregulated after 1 day and 4 

days of recovery, respectively. The rationale behind the use of 

an immune system microarray was unclear as no evidence of 

immune regulation in myopia was available in the literature at 

the time, however more recently, the immune system has been 

implicated in myopic growth control in response to lens-induced 

defocus [169,170] and FD [171]. The majority of the DEGs that 

were downregulated in Rada and Wiechmann [168] were not 

immune-related and encoded for transcription factors (ZFHX1B, 

c-Jun), ribosomal protein RPLP0, GAPDH, structural proteins 

(DCN, TPM3), kinase PDPK1, and molecular chaperone HSP70. 

This suggests that the immune system may be involved in ocular 

growth, but it is not the only biological process contributing to 

the development of myopia. This was further supported in a 

proteomic study which identified altered abundances of 

ovotransferin (and three other proteins, APOA1, CST3 and 

purpurin) after 7 days of lens-induced ametropia in chick 

vitreous [172]. 

Gene expression in the lens-induced model presents a different 

profile. In response to 24h of lens-induced defocus with +6.9D 

lenses, 123 genes were found to be differentially expressed 

[173]. Of these, glucagon, ZENK (EGR1), RHOG, and CD226 

were identified as potential candidate genes. In response to 

stronger powered lenses (±15D), thousands of genes were 

differentially expressed. Of these, DUSP4 responded to plus-

lens wear and BMP2, VIP, UTS2D, NOG, MYH13, OSBPL6, 

PDE3A responded to negative lens wear [174]. It is apparent 

that a majority of the DEGs in response to ±10D lenses are 

neurotransmitters (glutamate, glycine, GABA, acetylcholine), 

neuropeptides, and clock/circadian rhythms genes [174]. 

However, when submitting these genes to Over-Representation 

Analyses (ORA), the response to lens-induced defocus with 

stronger powered lenses (±15 D) were interpreted to be 

involved in biological pathways such as nervous system 

development/function, cell signaling, small molecule 

biochemistry, the cell cycle, cell-to-cell signaling/interaction, 

cellular movement, and metabolism of amino acids and 

carbohydrates [174]. This suggests that the analysis criteria (ie. 

differential gene expression vs ORA) greatly influences the 

interpretation of the results. Riddell et al. [170] also 

demonstrated good concordance with past microarray studies. 

DEGs in response to lens-induced myopia (-10D) were mainly 

involved in phototransduction, neurogenesis, response to stress, 

and cell structure while DEGs in response to lens-induced 
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hyperopia (+10D) were related to protein dimerization, 

inflammation, cell development and metabolism. Interestingly, 

many common genes were present in both normal development 

and in both lens groups. These genes were involved in circadian 

rhythm (NFIL3, ARNTL), and phototransduction (BLIMP-1, 

GUCA1A, CNGA3, NET1, CACNA2D4), not unexpectedly 

suggesting a role for circadian rhythm and phototransduction in 

the development of refractive errors [170]. 

It is well established and accepted that retinal signals drive 

ocular growth without the need for cortical input [175-177]. 

However due to the highly heterogenous nature of the retina, it 

is unclear whether certain cell types, ie. amacrine cells, are 

responsible for myopia development. Whole transcriptome 

analysis was performed on one such cell type, amacrine cells 

[178], as these cells had been reported to release several 

factors implicated in ocular growth [179-187]. A total of 128 

DEGs were identified after 24h of minus lens wear and 58 

DEGs after 24h of plus lens wear. Several candidate genes 

were proposed (ANGPT2, ChEST267a2, ChEST49o10, 

CYP26A1, DHHC14, DPF3, GNG13, GFRA1, GTF2H5, CD180, 

LOC425969, MSX2, PRKRIR, RAB22A) and validated. Although 

these genes were differentially expressed in the amacrine cell 

layer, and may be associated with a role in eye growth 

regulation, these genes could also represent indirect responses 

to changes in phototransduction, visual distortion and global 

eye size induced by lens wear [178]. 

While most ‘omic’ studies have focused on identifying retinal 

genes and proteins, Yu et al. [172] aimed to assess DAPs in 

chick vitreous. Their proteomic analysis revealed four DAPs 

associated with changes in ocular growth in response to 

positive and negative lenses. These DAPs were found to be 

interact indirectly with lipid metabolism pathways and 

cholesterol metabolism. Pathway analysis also revealed 

nicotinic acid, one of the water-soluble B vitamins, as a 

compound potentially modulating these proteins.  

In contrast to transcriptomic evidence, experimental myopia in 

chick produced several DAPs. In response to 7 days of LIM 

using -10D  lens, Lam, Li, Lo, Guggenheim, and To [188] 

identified dynamin-1, villin 1, tubulin, DDX1, Nuclear RNA 

Helicase (DEAD Family) Homologue-Rat, DRP2, CRMP-62, 

SARS, Septin 6, PGAM1 and Similar to Natural Killer Cell 

Enhancing Factor Isoform to be significantly differentially 

expressed [189], while Ras related protein Rab-11B, S-antigen 

retina and pineal gland (arrestin), 26S proteasome non-

ATPase regulatory subunit 14 (PSMD14), β-tubulin, 

peroxiredoxin 4 and ubiquitin carboxyl-terminal hydrolase L1 

(UCHL1) were significant during 24h of lens-induced recovery 

[188]. By comparison, CRMP-62, B-creatine kinase, γ enolase, 

tubulin α-1 chain, vimentin and APOA1 were significant during 

FDM [190]. It is plausible that signaling induced cytoskeleton 

remodelling involving axonal outgrowth, neuronal growth, and 

actin/tubulin reorganization at the retinal level would be 

expected during the myopic eye growth but also, likely that 

these changes might be altering the rate of developmental 

processes in ocular growth as suggested by Riddell, Faou, and 

Crewther [191]. 

While proteomics has revealed several potential proteins 

implicated in myopia development, not many have considered 

the effect of epigenetic regulation and post-translational 

modifications on protein abundance and function. One such 

study by Chen et al. [192] analysed the retinal 

phosphoproteome in a lens-induced (-10D) myopic chick model 

using titanium dioxide (TiO2) enrichment and nano-LC-Triple 

TOF MS/MS analysis [192]. Out of the 1,631 proteins (560 

phosphoproteins) identified in the myopic chick retina, 45 were 

upregulated and 30 were downregulated during myopic eye 

growth. This approach also identified several acetylated 

retinal proteins including carbonic anhydrase, ubiquitin 

carboxyl-terminal hydrolase, fatty acid-binding protein, 

nucleophosmin, 40S ribosomal protein S12 and histone H1x. 

Acetylated proteins indicate which proteins are actively 

responding to internal and external perturbations, and have 

been suggested to interfere with metabolic processes and 

energy homeostasis [193] as well as representing a type of 

epigenetic marker. Taken together, identifying these 

modifications would make for a clearer understanding of the 

retinal proteome in response to myopic growth, particularly as 

malfunctioning acetylation machinery can lead to diseases such 

as cataracts [194,195], neurodegenerative diseases [196] and 

developmental delay [197,198]. The presence of acetylated 

histones also suggests to us that the control of myopic eye 

growth may be under metabolic and/or epigenetic regulation.  

Rodent: Although responses to visual manipulations are slow in 

mice, the benefit of using this species is the large availability of 
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genetic backgrounds, making them ideal to use in disease 

studies with known genetic susceptibility. In a recent study 

[198], mice of varying genetic backgrounds (129S1/svlmj, A/J, 

C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, and 

WSB/EiJ) were assessed to determine the role of genetic 

variation and gene expression in baseline refractive errors, 

and in the development of refractive errors. On average, 

C57BL/6J were emmetopic, CAST/EiJ, NZO/HlLtJ, PWK/PhJ, 

and WSB/EiJ mice exhibited a range of hyperopia (ie. 

+10.6±2.2 D to +22±4.0 D) at baseline. Mice strains that 

were generally myopic prior to FD were A/J, NOD/ShiLtJ, and 

129S1/svlmj (ie. -3.5±3.6 D to -21.2±3.9 D). The range of 

baseline refractive errors in these mice offers great support for 

the role of genetics in refractive error development as it can 

be inherited as a quantitative trait. When these mice were FD 

for 3 weeks, transcriptomic analysis revealed a total of 2,302 

retinal genes that were differentially expressed across all 8 

mice strains. Of these, 793 genes upregulated in the strains 

that were hyperopic at baseline and 1,509 genes were 

upregulated in the strains that were myopic at baseline. 

Genetic background was also found to influence the animal’s 

susceptibility to FD with the CAST/EiJ and NZO/HlLtJ strains 

more susceptible to developing high and low myopia, 

respectively, even though these strains had a baseline 

hyperopic refraction. Differential expression of 643 genes 

were found to be positively correlated with the susceptibility to 

myopia, whereas expression of 1,274 genes was negatively 

correlated with the susceptibility to myopia. Furthermore, 714 

genes were found to be common between baseline refractive 

eye development and susceptibility to myopia in mice 

suggesting that genetic background plays an important role in 

susceptibility to myopia, particularly in baseline hyperopic 

mice. 

The large number of genes differentially expressed across the 

8 strains of mice indicated that several biological processes 

were involved in baseline refractive error including regulation 

of neurogenesis, neuron migration, regulation of DNA 

methylation, visual perception,synaptic vesicle endocytosis, 

regulation of protein kinase B, regulation of transcription and 

translation, covalent chromatin modification, insulin receptor 

signaling, dendrite morphogenesis, and response to oxidative 

stress. In particular, negative refractive errors were associated 

with activation of mTOR, EIF2, AMPK, β-adrenergic, and 

dopamine-DARPP32 feedback signaling pathways and 

suppression of HIPPO and RhoGDI signaling pathways. 

Additionally, several biological processes were involved in the 

susceptibility to myopia including regulation of signal 

transduction, cell-cell adhesion, transcription, translation, 

protein transport, and lysosome organization. Myopia 

susceptibility was also linked to suppression of mTORsignaling, 

EIF2 signaling, protein kinase A signaling, D-myo-inositol-5-

phosphate metabolism, cholesterol and choline biosynthesis, as 

well as with activation of amyloid processing, HIPPO signaling, 

PTEN signaling, and PPARα/RXRα signaling pathways. Several 

pathways were also associated with both baseline refractive 

development and susceptibility to myopia including EIF2 

signaling, protein kinase A signaling, regulation of eIF4 and 

p70S6K signaling, mTOR pathway, AMPK signaling, HIPPO 

pathway, axonal guidance signaling, synaptic long-term 

depression, dopamine-DARPP32 feedback signaling, RAR 

signaling pathway, synaptic long-term potentiation, CREB 

signaling in neurons, NRF2-mediated oxidative stress response, 

melatonin signaling, relaxinsignaling, β-adrenergic signaling, 

sumoylation pathway, PTEN signaling, ephrin receptor 

signaling, eNOS signaling, opioid signaling pathway, and α-

adrenergic signalling [199]. These findings highlight that there 

are different mechanisms involved in maintaining normal ocular 

growth compared to those accelerating ocular growth. 

One of the first studies to assess large transcriptome changes in 

mice was conducted by Brand, Schaeffel, and Feldkaemper 

[200]. Mice with the C57BL/6 background were FD for a 

period of 30min to 6h. Expression of 16 genes was found to be 

affected after 30 min whereas 4h of FD resulted in 27 

differentially expressed genes. After 6h of darkness and 6h of 

light (ie. 12h), the number of up and down regulated genes 

was balanced, with 10 genes being up-regulated and 11 

being down-regulated. Of these genes, EGR1 and cfos were 

suppressed in response to FD [200]. Although several genes 

were identified by Brand et al. [200] none were consigned to 

a specific biological pathway in their pathway analysis. 

However, most of the genes identified after 30mins and 4h of 

FD can be shown to be involved in cellular development, 

whereas DEGs at 24h of FD can be associated with DNA 

replication, recombination, nucleic acid metabolism, and small 
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molecule biochemistry [200] suggesting that dysfunction in 

growth signals may underlie myopia development.  

Following 2 weeks of FD in C57BL/6J mice, 54 miRNAs and 

261 mRNAs were identified as significantly differentially 

expressed [201]. Most of these genes were over-represented 

in biological processes related to intermediate filament 

organization, scaffold protein binding, detection of stimuli, 

visual perception, eye development, phototransduction, calcium 

ion homeostasis, G protein-coupled receptor, cell projection, 

and structural molecule activity. In contrast, Tkatchenko et al. 

[201] did not find any significantly expressed miRNAs in FD 

mouse sclera but 53 miRNAs were differentially expressed in 

FD mouse retina. A total of 135 mRNA targets were found for 

21 out of 53 differentially expressed miRNAs[202], which 

encoded for proteins primarily involved in synaptic function, 

cellular growth, proliferation, nervous and visual systems 

development. Interestingly, many miRNAs seem to target at 

least one transcription factor suggesting that the development 

of FDM involves a highly integrated genetic network of large-

scale changes in the retina. 

Quantitative proteomics on myopic (-15D) C57BL/6J mice 

revealed a more refined view of the mechanism involved in 

ocular growth. Of the 58 DAPs identified, most were involved 

in the GABAergic signaling pathway (GAT1, NSF, clatherin, 

dynein 1). Other DAPs were related to oxidative 

phosphorylation (OXPHOS), energy metabolism, structural 

pathways, cell differentiation and proliferation, DNA damage 

[203].Whereas, differentially abundant alpha-A-crystallin, 

crystallin beta A1 and crystallin beta A2 were significant in FD 

C57BL/6J mice [204]. 

Primate: One of the first transcriptomic studies utilised 

microarray technology to assess whole transcriptome changes 

in myopic retina of macaques subject to FD by lid fusion [205]. 

After several weeks of FD, a total of 119 DEGs were 

identified; 19 were negative correlation with the difference in 

depth of the vitreous chamber between closed and open eye 

whereas 100 DEGs showed a positive correlation with Vitreous 

Chamber Depth (VCD). Several genes were found to correlate 

with axial elongation (LOC157627, ARHGEF12, APLP2, 

PNUTL2, ZNF275, DHX40, AY680578, CCNA2, cyclin B1, 

cyclin B2, E2F4, HDGF, VIP) The majority of the DEGs are 

known to be  involved in cell proliferation and nucleic acid 

metabolism [205]. 

More recently, sequencing analysis in marmosets wearing ±5D 

lens for 10 days to 5 weeks has revealed several DEGs 

underlying refractive development. Interestingly, the response 

to plus and minus lense resulted in differential expression of 

different genes, with very little overlap between the two lens 

conditions. In marmosets, nine coding genes (ZC3H11A, 

TRIM23, STARD3NL, RCBTB1, PPP2CA, LOC100394842, CUL3, 

COMMD3, ACTR8) and four long noncoding RNAs 

(LOC103794697, LOC100396694, LOC100394543, 

LOC100392587) exhibited sign-dependent expression. 

However, three genes (PIK3R2, OGFRL1, and NSA2) were 

specific to plus-lens defocus and six genes (CLEC3A, CREM, 

LOC100399806, LOC100896985, MCAM, PRSS56) specific 

to negative-lens defocus [205]. Again, as suggest by Riddell et 

al. [169], there are clearly notable bidirectional responses to 

positive and negative lens defocus. After 10 days of negative 

lens wear, the primary pathways altered included glycogen 

degradation, ephrin and reelin signaling, biosynthesis of 

spermine and choline, while prolonged lens wear (i.e. 5 weeks) 

involved activation of ß-adrenergic signaling and suppression 

of cAMP-mediated signaling, protein kinase A signaling, 

calcium signaling, androgen signaling, and dopamine-DARPP32 

feedback signaling, among several other pathways. However, 

10 days of +5D lens wear primarily involved phenylalanine 

degradation and RANK, SAPK/JNK, NGF, and gap junction 

signaling, while prolonged lens wear (ie. 5 weeks) involved 

activation of EIF2, Notch, JAK/Stat, oncostatin M, somatostatin 

receptor 2, interleukin, CNTF, CREB, α-adrenergic, integrin, and 

ceramide signaling as well as suppression of apoptosis and 

aldosterone signaling [206].  

Interestingly, the 29 DEGs identified by Tkatchenko et al. [206] 

were located within 24 QTLs found to be associated with 

myopia in the human population suggesting a strong link 

between known human SNPs and myopia susceptibility. Indeed, 

when meta-analysing combined refractive error ‘omic’ data 

from different platforms and species, these differences were 

bidirectional [36]. Additionally, DEGs can give initial insights to 

the gene/proteins that are changing dramatically between the 

two conditions, however DEGs do not necessarily mean that the 

protein product is related to the disease condition. Genes can 
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be subject to mutations in their coding sequence and/or post-

translational modifications (ie. phosphorylation or acetylation) 

which can subsequently affect the functioning of the gene 

without affecting its expression level [207]. Hence, focusing on 

DEGs could potentially hamper the discovery of disease-

related genes in ‘omic’ studies. To overcome these limitations, 

Functional Class Scoring (FCS) approaches considers all genes 

within a study and discards the use of arbitrary cut-offs as all 

gene expression changes are considered regardless of the 

degree of change between samples [208-210]. 

Tree shrew: In sclera of lens-induced myopic tree shrew, 

several DAPs were identified, most of which function in cell 

adhesion, cytoskeleton, transcriptional regulation, and Extra 

Cellular Matrix (ECM) structural proteins (ie. PEDF, COL1A1, 

thrombospondin 1, COL1A2, GRP 78, thrombospondin 1) 

[211]. In the recovery period, there were fewer proteins that 

differed significantly. Of these, most were proteins involved in 

collagen synthesis, such as colligin, keratocan, collagen 12 α1 

[211] and thrombospondin 1 [210]. Two proteins (annexin A1 

and receptor of activated PKC1) were significantly 

upregulated during LIM and during recovery compared with 

normal eyes [212]. These findings confirm the understanding 

that cell-matrix adhesions, cytoskeleton and transcriptional 

regulation are involved in controlling scleral remodelling during 

myopia development and recovery but are not the primary 

mechanism driving eye growth. 

Guinea pig: In sclera of FD guinea pigs, DEGs were mainly 

associated with muscle development, structural processes 

glutamate signaling, and ion transport [213].Whereas in retina 

of minus lens guinea pigs, 8 DAPs (ACTB, ENO1, MDH, PKM2, 

PIMT, EIF1AX, RAB11B, PKM1) were associated with myopic 

growth [214].Crystallines (αA-, αB-, βA3/A1-, βA4- and βB2) 

were also more likely to be differentially expressed in FD 

guinea pig sclera, particularly between FD and FD recovery 

[215]. 

3.6 Tilapia: A less studied animal model of refractive error is 

the tilapia. Jostrup et al. [216] induced myopia by FD in 3-

month old tilapia for 4 weeks. Proteomic analysis revealed 

only three proteins as responding to 4 weeks of FD including 

annexin A5, gelsolin, and chaperonin-containing TCP-1 theta 

subunit. These proteins have not been identified in any other 

proteomic study indicating possible differences in the response 

to FD in tilapia compared to other animal models FD. 

BIOLOGICAL PATHWAYS IN MYOPIA 

Both human GWAS and animal studies have identified many 

candidate genes and proteins as implicated in the control of 

refractive myopia. The large number of single candidate genes 

and proteins differentially expressed in these studies cannot 

account for most of the observed morphological changes in 

both clinical myopia and animal models of refractive error 

development.  

As shown in recent studies summarised in Supplementary Table 

2, both ORA and FCS analysis have provided greater 

understanding of the mechanisms involved in refractive error 

development, driving the need to identify pathway-level 

changes as they seem to offer more interpretable and 

reproducible results [36,208]. 

Interestingly, the genes and proteins identified in both human 

and animal studies converge into similar biological pathways 

such as cell structure, cell-cell communication, neurotransmission, 

retinoic acid metabolism, ion transport, energy metabolism, 

immune system and eye development [18,36,152,217]. Hence 

it is surprising that only a few studies [36,37,169-

171,191,205] used FCS analysis in identifying biological 

pathways associated with refractive error development. These 

studies have highlighted that abnormal axial growth during FD 

ie. reduced luminance modulation, is accompanied by 

significant changes in retinal signal transduction at the mRNA 

and protein level. In turn, reduced downstream signal 

transmission to bipolar and ganglion cells (and more 

importantly back to the RPE) are secondary mechanisms 

involved in myopic eye growth. This altered state of retinal 

function also impacts on the availability of energy (via 

mitochondria) as phototransduction involves active ion transport 

and is a high-energy consuming process following reduced 

luminance modulation as seen in FD. Additionally, these 

biological processes activate a complex cascade of events 

designed to maintain the health and function of the eye, 

including complement activation, oxidative stress, antioxidant 

regulation and epigenetic regulation that when impaired, 

ultimately leads to the observed morphological changes seen in 

experimental myopia. 
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GWAS: Human GWAS have identified many SNPs that are 

considered representative of myopia susceptibility (see 

Supplementary Table 1). More recently, these studies have 

characterised these genes into groups based on similarities in 

their biological and molecular function. The first GWAS to take 

this approach identified candidate genes with functions in 

neurotransmission (A2BP1, GJD2, GRIA4, RASGRF1), ion 

transport and maintenance of membrane potential (CACNA1D, 

CHRNG, KCNQ5, MYO1D), retinoic acid metabolism 

(CYP26A1, RDH5, RORB), extracellular matrix remodeling 

(LAMA2, BMP2, BMP3) and eye development (CHD7, SIX6, 

PRSS56, ZIC2) [20].  Cheng et al. [218] and Riddell and 

Crewther [36] expanded on this, highlighting a role for BMP 

signaling, WNT signaling, metabolism, ion transport, 

organogenesis, embryogenesis, collagen and gap junction in 

their meta-analyses. More recently, functional categorisation of 

genes associated with high myopia [19] identified 66 gene 

sets, of which 83% were eye-related pathways. The most 

significant pathways were ‘abnormal photoreceptor inner 

segment morphology’, ‘thin retinal outer nuclear layer’, 

‘detection of light stimulus’, ‘nonmotile primary cilium’ and 

‘abnormal anterior eye segment morphology’. Similarly, these 

pathways were also found to be significant for syndromic 

myopia [219]. Four genes (RGR, RP1L1, RORB and GNB3) 

were common in the first 3 pathways and seven genes (ANO2, 

RP1L1, GNB3, EDN2, RORB and CABP4) were highlighted as 

the most likely causal genes in high myopia. Tissue enrichment 

analysis also implicated the retina as the most significant tissue 

in high myopia, and that light-driven visual signals are the 

initiating factors that drive myopia development - a conclusion 

reached from animal studies many years ago [220,221]. 

Animal studies: There is clear indication that the expression 

profiles responding to visual manipulation differ to those 

involved in myopia progression. However, the question remains 

as to which biological pathways are involved in the 

development and progression of myopia. There is a clear 

consensus that the initial signal to initiate myopic growth begins 

at the photoreceptors [221] followed by effector proteins that 

are secreted throughout the retina and RPE in response to 

visual stimuli [167] which then activates a signaling cascade 

throughout the retina resulting in ocular growth. 

While several DEGs and DAPs have been identified in animal 

models of myopia (Supplementary Table 2), most have used 

ORA to assess the biological functions of these genes (as 

reviewed above). However, not many studies have taken on 

second-generation pathway analysis which is able to identify 

subtle gene expression changes within a full expression 

dataset.   

Whole transcriptome pathway analysis of ‘omic’ studies of 

refractive errors to ascertain the biological mechanisms driving 

eye growth are limited. In optical defocus models of myopia 

(±10D), ORA analysis of DEGs has shown that the genes 

function in protein dimerization activity, inflammatory 

responses, cell development and metabolism. Such 

differentially expressed gene measures of myopia progression 

are indeed indicative of cell responses associated with wound 

healing, stress and adherans junction morphology [170]. 

However, when the analysis is broadened to take in the 

complete dataset with no arbitrary cut-off, structural (ECM and 

TJs), metabolic (FA, TCA, mitochondrial) and immune-related 

pathways appear more strongly up-regulated during myopia 

induction in chick [170]. In the FD model, these pathways differ. 

Chicks FD for up to 72h display altered gene expression in 

pathways involved in mitochondrial energy metabolism and 

‘one carbon pool by folate’. Whereas, long-term FDM induction 

(ie. 10 days) has been shown to involve several pathways 

including mitochondrial energy metabolism, neurotransmission, 

ion transport, and immune pathways. Interestingly, FD recovery 

was found to involve suppression in bile acid metabolism [171]. 

These data suggest that the mechanisms driving eye growth 

are dependent on the type and duration of visual manipulation 

although similar biological processes are present across lens 

type and duration including cell/tissue development, cell 

signaling and metabolism. Furthermore, these secondary 

mechanisms are essential in supporting ocular growth changes 

and retinal homeostasis during reduced luminance modulation.  

When considering positive and negative lens types, second-

generation pathway analyses have identified additional 

biological pathways. Riddell et al. [191] have also identified 

significant differences in abundance of proteins involved in ion 

and vascular homeostasis and signal transduction in response to 

negative lens wear. By comparison, positive lenses were more 

associated with nucleocytoplasmic transport [191]. This is not 
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surprising as lens-wear is characterised by blur and changes in 

phototransduction, ocular growth rate and thickness of the 

choroid. Furthermore, Riddell et al. [37] showed that the 

differentially abundant proteins following 6h and 48h of 

negative and positive lens-wear were highly correlated to 

several human diseases characterized by abnormal 

electroretinograms, photophobia, arrhythmia and nyctalopia at 

6h, and physiological stress, cholesterol homeostasis, and 

melanin at 48h. While proteins related to age-related age-

related macular degeneration (AMD), primary open angle 

glaucoma (POAG), cataract and choroidal neovascularization 

were significant after 48h of negative-lens wear [37].  

Interestingly, only one group has provided complementary 

transcriptomic and proteomic datasets for the effects of LIM 

[37,170,191] and FDM [171,222] on animal models of 

refractive errors. Although there were significant differences in 

genes and proteins within the transcriptome and the proteome 

analysis in response to experimental refractive errors, there 

was very little concordance in results. The main assumption with 

large-scale proteomic studies using MS/MS is that alterations in 

transcript levels are highly correlated with protein levels. 

However, changes at the mRNA level do not always parallel 

changes at the protein level. Post-translational modifications of 

proteins (ie. acetylation) may also be involved in regulating 

eye growth in refractive myopia. It is well-documented that 

proteins are greatly influenced by translational efficacy, codon 

usage/bias, mRNA stability, protein stability and post-

translational modifications resulting in a lack of correlation 

between mRNA and protein abundances[223-225]. Therefore, 

animal ‘omic’ studies should be considered along with these 

assumptions, particularly as a recent meta-analysis has 

illustrated very little commonalities between the transcriptome 

and proteome profiles of the myopic retina [36]. 

SUMMARY 

Vast effort has been made to identify the genetic susceptibility 

to myopia. What is immediately apparent from syndromic 

myopia is its comorbidity with developmental delay and 

intellectual disability suggesting that myopia is most likely a 

result of impaired neurodevelopment. This is not surprising as 

several studies have indicated that a number of developmental 

processes are dysregulated in response to visual manipulations, 

making this a possible avenue to explore in future research 

[36,169-171]. 

It is also evident that negative defocus and FD induces a 

stronger response at the gene level compared to positive lens 

wear [170,171,206], and that genetic susceptibility plays a 

role in myopic development in animal models [199]. Thus, these 

data reveal that hyperopic and myopic defocus affect the 

expression of largely different genes and proteins in the 

retina, and that post-translational modifications should be 

considered in these large-scale studies. While very few genes 

are affected by both hyperopic and myopic defocus, there are 

commonalities in the pathways with which these genes are 

involved in [36] suggesting that similar developmental 

mechanisms are involved in ocular growth. Although candidate 

proteins showed some overlap with both transcriptome studies 

and GWAS candidate genes, it seems that the most significant 

interaction is between the proteome and transcriptome[36]. 

It is also important to note that changes in the mRNA level are 

not always translated into changes in protein content. It has 

been found that alterations in mRNA abundance are often 

poorly correlated with changes in protein levels, particularly in 

complex biological systems [40-44]. One factor for the 

discordant levels of mRNA to protein may relate to the 

possibility that at any point in time, the concentration of mRNA 

reflects a homeostatic process aimed at maintaining a certain 

level of protein in tissues where many interacting factors and 

feedback loops are at play. This makes it important to assess 

both transcriptomic and proteomic changes and eventually 

microRNA and epigenetic changes within these systems. 

Additionally, it may be how these molecules interact with the 

environmental ionic changes that accompany FD or optical 

defocus-induced reduction in luminance modulation that 

produces changes in ocular volume and refractive error, that 

would give a better understanding of the complex biological 

response to refractive error development. This is particularly 

important as expression changes are conserved across species 

regardless of their DEGs and DAPs profiles suggesting that 

there are similar biological mechanisms driving eye growth 

[36]. Thus, it would be short-sighted to assume that individual 

genes (eg. dopamine, VIP) and genetic variants play a primary 

role in refractive error development. Rather, it is how genes 

within a biologically redundant organism function together that 
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predicts the phenotypic outcome. In fact, it may be that this 

complex disease is not controlled by genetics, rather that the 

genes react to environmental factors and the induced 

epigenetic changes. 
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