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abstRaCt

INtRoduCtIoN

Carbohydrates play a major role in many biological systems by their lectins which recognize them. 
Carbohydrate-Lectin Interactions (CLIs) are involved in expansively diverse biological processes 
which include cell-cell interaction, cell activation, cell adhesion, endocytosis, phagocytosis, inflam-
mation, tumor cell metastasis, and apoptosis. One main drawback for investigating carbohydrate-
lectin interactions is their weak affinity. Nature utilizes multivalent display of oligosaccharide to am-
plify the carbohydrate-protein interactions. In addition to multivalency, we have shown that shape of 
the multivalent probe also influences CLIs. In this review article, we have provided detail summary 
of the biological significances of glyco-gold nanoparticles of different shapes, ranging from bacte-
rial, cellular to zebrafish model.

Metallic Nanoparticles (NPs), such as gold, silver, iron, and CdSe are the class of multivalent probes 
found to have significant applications in biomedical systems ranging from imaging, sensing, drug 
delivery and gene targeting [1-3]. Being rigid systems, metallic NPs can also be easily synthesized 
in large quantities with different sizes, shapes and orientations and can also be easily decorated 
chemically and biologically [4-7]. Among these wide range of NPs gold is widely explored scaf-
fold for their biomedical applications because of their excellent stability and solubility in biological 
medium, ease of obtaining different sizes and various morphologies (rod, sphere, star, cube and 
spindle) and tunable optical properties associated with surface plasma resonance [8,9].

Carbohydrate-Protein Interactions (CPIs) are one of the most significant and major events on cell 
surfaces [10-12]. Cell surface glycans recognizes different pathogens, toxic materials, and cells 
with high selectivity and sensitivity through cis/trans binding with the proteins. Therefore, carbohy-
drates are of central importance in the development of next-generation biomarkers. Generally, CPIs 
are found to be weak, which has been compensated by nature through the multivalent presentation 
of ligands. Major research efforts are put into mimicking the bio-events by replicating the multiva-
lent scaffolds [13]. Glycan functionalized NPs provides versatile multivalent scaffolds, which could 
fine-tune CPIs by varying size, orientation and density of the sugars on their surfaces [14-20]. 

The outer topology of AuNPs can be easily functionalized with glycans of interest through the 
simple assembling of thiol-terminated sugars on the gold surface with the solid chemical composi-
tions, which gives the multivalent presentation of glycans in a globular fashion almost mimicking 
the glycocalyx of the cell surface. Glyco-AuNPs could further increase the avidity of CPIs by tuning 
their optical and electrochemical properties. Being less toxic compared to other NP systems such 
as quantum, dots AuNPs have been thoroughly used to decorate more than one sugar for targeting 
HIV, bacteria, modulation of immune responses, and studying CPIs and carbohydrate-carbohydrate 
interactions [4-7]. Similarly, enormous effort has been put into developing gold nanodots and nano-
clusters for the sensitive and selective detection of E. coli [21-24]. Similarly Au rods modified with 
aptamer switch probe was used successfully for multimodal cancer therapy [25]. In all these inves-
tigations, the shapes of AuNPs were kept constant to validate the binding with bacteria, cells or or-
gans, limiting the assessment of the role of the different shapes of NPs involved in specific CPIs.

Recent studies have demonstrated that different shapes of the AuNPs influenced the cellular up-
take, bio distribution, and immune response, making shape as one of the important factors for un-
derstanding the CPIs and developing new biomaterials [26]. Efforts have been taken in the direction 
of functionalizing different shapes of AuNPs with antibodies, peptides, aptamers to enhance their 
specificity for tumors, immune responses and bio sensing processes [27-30]. However, a system-
atic investigation of shape dependent CPIs with the same volume and sugar density and its poten-
tial applications have not been evaluated majorly. In this review, we summarized the work done by 
our group towards understanding the role of different morphologies of glycol-AuNPs on CPIs in a 
biological system. The complete account of various shapes of AuNPs functionalized with simple 
monomeric sugars, homo and hetero glycodendrons and their interactions in in vitro and in vivo 
systems along with bacterial detection are given in detail.

Recent advances in the Glyco-Gold Nanoparticles of different shapes and 
its potential applications

aRtICLe INFo

KeywoRds



To demonstrate the significance of shape-dependent glyco-AuNPs me-
diated biological interactions, we first reported the use of three distinct 
shapes of glyco-AuNps in bacterial recognition and inhibiting bacterial 
infection. Three different shapes (rod, sphere, and star) of gold nano-
particles coated with mannose and galactose sugar substrates and PEG 
were used to quantify the binding affinity with E. coli [31] (Figure 1). To 
profile the potential applications of the shape dependent CPIs, inhibition 
of E. coli infection of HeLa cells was quantified (Figure 1). Our studies 
showed that the rod-shaped AuNPs functionalized with mannose had 
substantial sensitivity compared to that of star-shaped and spherical 
shaped AuNPs. Factors such as self-assembly and effective surface 
contact are critical for sensitive adhesion. In a more general perspective, 
blockage of E. coli infection by rod mannose-AuNPs may open opportu-
nities to develop efficient medicines for urinary or digestive tract infec-
tions. 

shape-depeNdeNt GLyCo-GoLd NaNopaRtI-
CLes baCteRIaL adhesIoN

eFFeCt oF hoMo aNd heteRoGLyCodeNdRoN 
FuNCtIoNaLIzed VaRIous shape GoLd NaNo-
paRtIC Les oN baCteRIaL bINdING
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In addition to multivalency and shape, heterogeneity of carbohydrate 
scaffold is a crucial parameter which affects the avidity of CPIs [32]. 
To study the role of heterogeneity on glyco-AuNPs biological interac-
tions. Homo and hetero glycodendrons of mannose and galactose were 
synthesized by stepwise addition of sugar unit to tripod active ester fol-
lowed by fourth arm functionalization with thiol linker, which was then 
self-assembled on rod and spherical AuNPs [33]. Carbohydrate-lectin 
binding of Mannose homodendrons conjugated AuNPs showed a high 
affinity towards Con A lectin compared to heteroglycodendron. Further 
rod-shaped homodendron conjugated AuNps showed ~2 fold higher af-
finity towards Con A compared to sphere indicating the importance of 
homo-multivalency for lectin recognition. Similar kind of observations 
is found in case of binding studies with E. coli ORN 178 and 208. Rod-
shaped homo mannose dendrons showed 5 to 10-fold higher bacterial 
aggregations compared to heteroglyco-dendron and sphere shaped 
homo and hetero glycol-dendrons (Figure 2). Finally, we conclude that 
homomultivalency with specific shape influence the CPIs predominantly, 
while heteromultivalency has very less impact (Figure 2). 

IN VItRo shape-depeNdeNt GLyCo-GoLdNps 
uptaKe

We next investigated the shape dependent uptake of Glyco-Gold Nano-
particles (G-AuNPs) in different cancer cell lines. Among all NPs only 
Mannose modified NPs showed inhibition Con A and DC-SIGN lectin 
binding, on top of this rod mannose NPs showed 3-fold potent inhibi-
tions of lectins compare to sphere and star [34]. These NPs further in 
cellular internalization studies showed that mannose rod AuNPs inter-
nalized three-fold higher compared to sphere and star in DC-SIGN trans-
fected HeLa cells while galactose and PEG NPs showed less internal-
ization (Figure 3). In case of MDA-MB-231 cells which are expressing 
both mannose and galactose receptors showed more internalization 
of mannose and galactose rod NPs compared to other NPs. Uptake of 
mannose rod NPs was greater compared to galactose NPs, suggesting 
that mannose receptors are more active than galactose receptors on the 
cell Figure 3. In case of HepG2 cells expressing a high level of asialogly-
can galactose receptors rod galactose, NPs internalized more compared 
to rest of NPs. These findings indicate cell surface carbohydrate recep-
tors guided internalization was influenced by nano-rods. The probable 
reason for the highest internalization of rod-AuNPs may be because of 
high aspect ratio, a high contact area of rod-AuNPs with respect to ex-

ternal stimuli and self-assembly of rod-AuNPs. A further mechanism of 
uptake of these mannose rod NPs was evaluated using various inhibitors 
of endocytosis pathway by ICPMs and dark field imaging techniques. It 
was found that chlorpromazine treated DC-SIGN transfected HeLa cells 
showed lesser internalization of mannose rod NPs. These results proved 
that rod NPs internalized through energy-dependent, clathrin-mediated 
endocytosis (Figure 3). 

shape-depeNdeNt GLyCo-auNps bIodIstRIbu-
tIoN aNd sequestRatIoN

Finally, we investigated the bio-distribution of different shapes of glyco-
gold nanoparticles (GAuNPs) in zebrafish system (Figure 4) [35]. In vivo 
experiments showed that rod-AuNPs exhibited the fast uptake, while, 
star-AuNPs displayed prolong sequestration, demonstrating its potential 
therapeutic efficacy in drug delivery (Figure 4).  Collectively, these results 
revealed the benefits of different shapes in carbohydrate-mediated Figure 
4. Interactions and also illustrate zebrafish as a potential in vivo system 
to study carbohydrate-mediated interactions in quick time (Table).

Nature utilizes multivalent display of oligosaccharide to amplify the 
carbohydrate-protein interactions. In addition to multivalency, shape 
of the multivalent probe also influences the binding avidity. In this 
review article we are providing detail account of biological signifi-
cance of glyco-gold nano particles of different shapes ranging from 
bacterial, cellular to zebra fish model.
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Figure 1: (i) E. coli strain ORN 178 aggregation using various shapes of glyco-AuNPs; (ii) SEM images of E. coli ORN 178 strain (a) Mannose-
rods; (b) Mannose-sphere; (c) Mannose-star; (iii) Man-AuNPs (conc. 0.8 µg ml-1) bound to the surface of E. coli ORN 178 according to the 
surface availability; (iv) Inhibition of E. coli infection of HeLa cells.

Figure 2: (a) Homo and Hetero glycodendron conjugated to different shapes of AuNPs; (b) Aggregation of E. coli strains ORN 178 and ORN 
208 using Homo and Hetero glycodendron conjugated AuNPs; (c) Relative fluorescence intensity of bacterial aggregation at various AuNP 
concentrations.
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Figure 3: (i) Statistical analysis of ICP-MS data of HeLa (DC-SIGN transfected), MDA-MB-231 and HepG2 at different time intervals. (a) HeLa- 4 
h; (b) HeLa- 24 h; (c) HeLa- 48 h; (d) MDA-MB-231- 4 h; (e) MDA-MB-231- 24 h; (f) MDA-MB-231- 48 h; (g) HepG2- 4 h; (h) HepG2- 24 h; (i) HepG2- 
48 h. Data are presented as the mean ± SEM for three independent experiments (***P < 0.001, **P < 0.01 *P < 0.05 and n.s = not significant): (ii) 
TEM images of the HeLa cells containing (a) S-2; (b) R-2 and (c) St-2 after 24 h: (iii) Dark field microscopic images of the HeLa cells treated with 
inhibitor for 30 min followed by R-2 after 4 h. (a) Control R-2 after 4 h; (b) NaN3 (50 mM); (c) dynasore (50 μM); (d) chlorpromazine (25 μM); (e) 
Me-β-cyclodextrin (10mM); (f ) mannose-9-glycan (50 mM).

Figure 4: (i) Fluorescence conjugated glyco-AuNPs; (ii) Statistical analysis of ICP-MS data of Zebra fish digestive system after (a) 4 h; (b) 24 
h; (c) 48 h; (iii) Con focal images of Zebra fish digestive system injected with Fluoresce in conjugated glyco-AuNPs (a) S-1, 4 h; (b) R-1, 4 h; (c) 
St-1, 4 h; (d) R-2, 4 h; (e) R-2, 24 h; (f) R-2, 48 h.
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The results of this study permit the following conclusions and suggestion 
regarding the shape dependent glyco-gold nanoparticles interactions. 
(a) The bacterial adhesion with glyco-glyconanoparticles are sensitive to 
shape of the nanoparticles. Sensitivity is higher in rod-shaped gold-nano-
particles compared to spherical and star-shaped gold-nanoparticles. 
Similarly, in-vitro and in-vivo analysis indicated that shape indeed one of 
the crucial parameter to find tune the carbohydrate-protein interactions. 
Overall, an insight into how the particular shapes of the nanoparticles 
translate its information to the final carbohydrate-protein interactions 
generates the new set of rules to synthesize smart glycoprobes to target 
and imaging. 

Financial support from the IISER, DST is gratefully acknowledged. S. S. 
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lowships
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