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ABSTRACT 

Cubic membranes (CM) are highly ordered 3D periodic phospholipid bilayer 

membrane structures. The literature survey revealed that CM often appeared in the 

eukaryotic subcellular organelles under multiple stress and diseased conditions. CM 

were found in the free-living “starved” amoeba Chaos carolinense (macrophage-like 

ancient protozoan) and microglia (brain-resident macrophages) of Alzheimer’s disease 

(AD) patients. The amoeba starvation study reveals that plasmalogen is the key lipid 

module for CM formation, and this major brain lipid has been controversially 

discussed to be altered in AD. Here we propose a novel hypothesis that the presence 

of sufficient plasmalogen lipids may support the induced microglial CM formation in 

response to multiple stressors and further provide anti-inflammatory, antioxidant and 

cell protective functions to alleviate neuroinflammatory-oriented AD pathogenesis. In 

short, both plasmalogen and microglial CM are beneficial for the central nervous 

system (CNS) homeostasis and may point an effective remedy for AD. 

CUBIC MEMBRANES 

Cubic Membranes (CM) are highly ordered membrane structures described by 3-

dimensional periodic minimal or level surfaces with cubic symmetry (Figure 1) [1-3]. 

CM are often found in the subcellular organelles (mitochondria and endoplasmic 

reticulum) of eukaryotes under stress and diseased conditions [3] including viral 

infections [4,5] and immunological disorders [6,7]. Without being appreciated the 3D 

nature of CM is probably due to the convoluted looks of their 2D expressions in 

thousands of published transmission electron microscopic (TEM) micrographs [8]. CM 

also appeared in brain microglia of Alzheimer's disease (AD) patients [Figure 1c] [9]. 

Microglia, the brain-resident macrophages as major innate immune surveillance cells in 

CNS play an important role in Alzheimer’s disease and others involving brain 

inflammation [10,11]. Amoeba CM formation was induced by starvation and 

oxidative stress, and in turn, these stunning nanostructures may act as an alternative 

antioxidant system to reduce oxidative damage [12,13] and promote amoeba cell 

survival [14]. We thus speculate that the induced microglial CM in some AD brain 

might have similar implications in protecting brain cells under stressed conditions, 

based on the facts from a series of amoeba starvation studies [12-14] in addition to 

an extensive literature survey of TEM images [3],  suggesting CM may act as cell self-

defense system in response to multiple internal or external environmental cues. The 

stressors can be just a simple exposure to excess oxygen free radicals or certain 

cytokines (Type I Interferon) as manifestations of inflammatory response. In addition, 
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amoeba Chaos starvation study revealed that plasmalogen 

is the key lipid module in participating CM formation [3,15]. 

This bioactive ether lipid has been recognized to be actively 

participating in cell and tissue homeostasis and its deficit or 

deficiency is strongly associated with multiple diseases 

including AD [16]. 

 

 

 

 

 

 

 

 

 

 

 

DOUBLE-FACED MICROGLIA 

Microglia, the primary innate immune cells of CNS, are 

brain-resident macrophages [10]. The readily minor 

stimulation by micro-environmental changes of the brain 

would induce the conversion of resting microglia (M0) to an 

activated state, as pro-inflammatory phenotype (M1) or 

anti-inflammatory phenotype (M2). M1 microglia release a 

variety of pro-inflammatory factors as well as large amounts 

of nitrogen or oxygen free radicals, while M2 microglia 

release anti-inflammatory factors to maintain CNS 

homeostasis [10]. Microglia play an important role in chronic 

neurodegeneration and acute brain trauma and stroke [11]. 

Of particular importance, microglia also play roles in 

learning and memory by remodeling synapses through 

releasing cytokines and brain-derived neurotrophic factor 

(BDNF) [17]. In addition, microglia can reduce neuronal 

damage by removing β-amyloid and phagocytic debris or 

dead cells. Nevertheless, microglia also impair neuronal 

functions by excreting the toxic factors [18] as a dual player 

in neuro-inflammation and neurogenesis process [19]. A new 

study by Pluvinage et al. [20] using laboratory techniques to 

identify mouse genes whose activity either impairs or 

enhances microglial phagocytosis has put the senescent 

microglia again as spotlight in normal ageing brain and other 

neurodegenerative diseases including AD. 

Microglial studies from all aspects are therefore indispensable to 

provide fair explanations in AD pathogenesis. However, most of 

the microglia-related studies are at molecular level, and the 

approach to look at their ultrastructure in terms of 3D membrane 

shape of organelles is rare. A 60-years history of microglial 

ultrastructures by electron microscopic studies was recently 

reviewed [21], and surprisingly there are very few TEM studies 

on the intracellular membrane structures defining the microglial 

phenotypes. The lacking of TEM information on microglial 

intracellular organelle membrane structures has limited the full 

understanding of such important neuroglia. Of interest, the 

tubuloreticular structures (TRS) (CM subtype) [Figure 1c] 

discovered by Wegiel and Wisniewski (1992) were in the same 

region of brain microglia where β-amyloid (Aβ) was present [9]. 

β-amyloid has long been thought to have detrimental effects in 

microglial activation and neuro-inflammation [22]. The failure in 

the clearance of Aβ and aggregated plaques is considered to be 

the main cause of AD development. However, there are some 

opposite views on Aβ which is likely to have an antimicrobial 

property [23,24], in addition to its physiological role in memory 

protection [25]. Therefore, the actual role of Aβ as a protection 

or risk factor in AD brain remains controversial. 

The level of type I interferon (IFN), a pleiotropic cytokine of 

innate immune system, is associated with microglial functions as 

manifestations in neuronal development, neuro-inflammation and 

neuro-degeneration [26]. Type I IFN is to be blamed for the 

innate immune response-mediated CNS disorders. By regulating 

type I IFN signaling, it is possible to delay cognitive decline and 

reduce neurotoxicity [27]. There is a significant increase in type I 

IFN-α level in the serum of systemic lupus erythematosus (SLE) 

patients [28], who have a higher risk of developing dementia 

than the normal ones [29]. Mak et al. reported that the 

peripheral blood mononuclear cells from SLE patients showed a 

distinct TRS membrane pattern (CM subtype), and an addition of 

IFN-α could directly induce CM formation in human B lymphocyte 

cell cultures [30]. Whether the microglial CM in AD brain as the 

manifestation of high level of type I IFN that may affect 

microglial phenotypes in terms of intracellular complex 

 

Figure 1: Cubic membrane (CM) architecture. (a) 3D 

mathematical model representing the lipid bilayer of CM 

organization. (b) TEM image of mitochondrial CM found 

in 10-day starved amoeba Chaos cells. Scale bar: 250 

nm. (c) CM structure (indicated arrows) in some AD brain 

microglia, x36,000 [reproduced with permission from [9]. 



SL Nutrition And Metabolism 

 03 

The Potential Roles of Plasmalogens and Induced Microglial Cubic Membranes in Alzheimer's Disease Pathogenesis. SL 

Nutrition And Metabolism. 2022; 2(1):119. 

membrane organizations and the corresponding functions 

requires further studies. 

CM AS EVOLUTIONAL SELF-DEFENSE SYSTEM SUPPORTS 

CELL SURVIVAL UNDER STRESS? 

A series of studies of induced CM in amoeba Chaos 

carolinense and its potential function under starvation and 

oxidative stress have been reported by Deng and co-

workers [12-14,31-32]. An ancient protozoan amoeba 

Chaos might have similar phagocytic behavior and functions 

as brain-resident macrophages (microglia). The previous 

studies showed that when Chaos cells were under starvation 

stress, their mitochondrial inner membranes folded into CM 

[12,13], and amoeba survival rate during long-term 

starvation period is much higher than the ones without CM 

[14]. In the presence of a large amount of reactive oxygen 

species (ROS), the starvation-induced amoeba CM protected 

bio-macromolecules (lipids and nucleic acids) from oxidative 

damage [13], suggesting CM might possess of antioxidant 

properties attributed to the 3D spatial arrangement of 

phospholipid-protein bilayer membranes [12]. Whether the 

presence of CM in AD brain microglia may play similar role 

as CM in starved amoeba Chaos? Whether the induced 

microglial CM is directly or indirectly associated with high 

level of type I IFN or ROS generation in the brain? or 

whether CM may protect both neuron and glial cells from 

oxidative damages during inflammatory process and further 

help in maintaining CNS homeostasis? All these intriguing 

questions require more studies to uncover the truth. 

PLASMALOGENS: SMALL MOLECULES MATTER? 

Plasmalogens (Pls) are a unique type of ether lipids 

containing a fatty alcohol with a vinyl-ether bond at the sn-1 

position, and enriched in polyunsaturated fatty acids (PUFAs) 

at the sn-2 position of the glycerol backbone, found in 

numerous human tissues, with particular enrichment in the 

nervous, cardiovascular and immune system [16]. Pls are not 

only structural membrane components and a reservoir of 

lipid second messengers, but also known to facilitate 

membrane fusion and involved in ion transport, cholesterol 

efflux and storage of long-chain PUFAs. However, such 

important brain lipid has been ignored due to very little 

progress in plasmalogen research until 2006. There is a 

significant reduce in Pls level in the brain [33,34] and serum [35, 

36] of AD patients, and the degree of decline in serum Pls level is 

related to the severity of the disease [35]. Pls extracted from 

Ascidian [37] and sea cucumber have been fed to AD mice [38] 

and AD rats [39], and the scallop-derived Pls (sPls) was fed to 

patients with mild AD and mild cognitive impairment [40]. The 

studies on the animal model showed that oral ingestion of Pls 

were able to attenuate the LPS-induced memory loss and 

microglial activation through NF-kB signal pathway [41,42]. Ifuku 

et al. also reported that Pls has both anti-inflammatory and anti-

amyloidogenic effects [43]. Pls level also affects the activity of γ-

secretase and is inversely related to the level of β-amyloid, a 

disease hallmark of AD [44,45].  

Plasmalogen as major brain lipids has been controversially 

discussed to be altered in Alzheimer’s disease (AD) and whether 

the changes of Pls as cause or consequence of AD pathology 

however remains elusive. Of significance, a number of animal 

studies [37-39,46] and a recent clinical trial [40] have shown that 

enhancing the level of Pls through oral intake or ingestion indeed 

improved cognitive function which was impaired in AD. 

Of our best interest, plasmalogen was recognized to be essential 

in amoeba CM formation induced by starvation stress [3,15]. Pls 

has been found to inhibit hippocampal neuron cell death upon 

nutrient deprivation in mice model [47,48]. This observation 

supported amoeba starvation study that when amoeba pre-fed 

with Pls-rich Paramecium they survived much better than amoeba 

pre-fed with Pls-poor Tetrahymena. The former food organisms 

can induce amoeba CM formation under starvation stress, while 

the latter cannot induce CM under same starvation stress and the 

lifespan of amoeba is significantly reduced [14].  

The pioneer work of atomistic molecular dynamics simulations by 

Rog and Koivuniemi showed that Pls form more condensed and 

thicker lipid bilayers when compared to the corresponding diacyl 

bilayer system [49]. Along with this, Pls also play an important 

role in regulation of lipid rafts microdomain that is essential in the 

signal transduction of macrophage phagocytosis [50]. The 

integrity of membrane rafts that may modulate brain-derived 

neurotrophic factor (BDNF)-mediated neuronal synaptic plasticity, 

suggesting Pls may modify BDNF-mediated neurogenesis via rafts 

membrane structure [51]. An in-vitro study by Angelova et al. 

demonstrated that high loads of BDNF proteins promoted 

transformation of cubic phases [52], which has similar structural 
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characteristics as CM whose lattice size is usually 10-fold 

larger than cubic phase structure [3]. Whether the 

overexpression of BDNF may induce CM formation in vivo 

requires further studies? The interplay between plasmalogen 

level, CM biogenesis and BDNF expression, and the effects 

of their interrelationship on microglial phenotypes and 

functions deserve more attentions. 

ANOVEL HYPOTHESIS WITH PLASMALOGEN AND INDUCED 

MICROGLIAL CM AS CORE REGULATORS IN AD 

PATHOGENESIS 

Although amyloid beta has long been the prime suspect in 

Alzheimer’s diseases and as a sole hallmark and its presence 

in the brain helps define some of the clinical symptoms. 

Nevertheless why these healthy proteins in the brain turning 

to something aberrant or pathological or destructive in the 

brain remains a mystery.  

The positive effect of CM formation in promoting amoeba 

cell survival under starvation-induced stress has encouraged 

a speculation that the induced microglial CM might possess of 

similar antioxidant and protective mechanisms in AD 

pathogenesis. The ability of inducing CM in microglia might 

be determined by plasmalogen level in the brain and serum. 

In short, if there is plenty of plasmalogen lipids, CM can be 

induced under starvation stress and act as an evolutionarily 

conserved self-defense system; if there is plasmalogen 

deficiency or deficit, CM formation cannot be supported, and 

this self-defense system might be weakened and CNS 

homeostasis is compromised consequently. If the stressors to 

brain sustain, the oxidative damage and cytotoxicity may 

proceed and lead to a vicious circle, AD may thus progress 

(Figure 2).  

A novel hypothesis to be proposed to have plasmalogen and 

induced microglial CM as core regulators in AD 

pathogenesis, based on the assumption that CM (a highly 

ordered 3D membrane shape) may help lower the oxidative 

damages, reduce neurotoxicity, protect brain cells (both 

neuron and glia) and finally maintain CNS homeostasis. In 

short, plasmalogen amount is the key to determine whether 

CM may appear or not under stress conditions. The question 

is how to induce microglial CM? By simply providing 

functional food ingredients (plasmalogens) to prepare 

microglia to readily form CM in response to stress? The amoeba 

starvation study (food rich or poor in plasmalogens) [14] may 

support partly the reason why scallop-derived Pls supplements 

are effective in both animal studies [37,38,39] and clinical trials 

[40] of AD?  

In summary, we propose to use microglia as cell model to study 

the roles of plasmalogen and induced CM and their potential 

anti-inflammatory, antioxidant and cell protective function in AD 

pathogenesis (Figure 2), to hopefully shed light on the still misty 

etiology of Alzheimer’s disease: a global challenge for the 21st 

century. 
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Figure 2: The potential roles of plasmalogen and induced 

CM in microglia-oriented neuro-inflammatory response. 

Type I IFN, amyloid beta (Aβ) are involved as promoter or 

inhibitor during neurodegeneration process. Plasmalogen 

may positively regulate BDNF-mediated neurogenesis. The 

CNS homeostasis is supported by inducing microglial CM 

which may help reduce neurotoxicity and 

neurodegeneration in response to multiple stressors caused 

by inappropriate lifestyles. Removing the stress factors 

may recover BDNF expression and adult hippocampal 

neurogenesis [53]. 
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