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ABSTRACT 

Gaucher’s Disease (GD) is caused by gene mutations inducing a deficiency in the 

production of glucocerebrosidase or saposin C (a cofactor). Glucocerebrosidase is an 

important catalyst of the hydrolysis of glucosylceramide into ceramide and glucose. 

This leads to the accumulation of sphingolipids in macrophages (called Gaucher cells) 

in several tissues, especially in the reticuloendothelial system, resulting in a spectrum of 

clinical manifestations, including hepatosplenomegaly, anemia, thrombocytopenia and 

bone crisis. In GD, cytokines are also released and major functional changes occur 

affecting the iron, calcium and insulin metabolism, with serious consequences for the 

patient’s energy balance.The purpose of this paper is to provide health professionals 

with a summary of the major metabolic and nutritional changes observed in GD 

patients. 

INTRODUCTION 

Mutations in the glucocerebrosidasegene (GBA, located in the q21 region 

ofchromosome 1) [1] cause a potentially severe deficiency of thelysosomal enzyme 

glucocerebrosidase (GCase; glucosylceramidase or acid β-glucosidase; EC: 4.2.1.25) 

[2]. GCasecatalyzes the hydrolysis of glucosylceramide (GlcCer) into ceramide and 

glucose. Low GCaseactivity leads to the accumulation of glucosylceramide and 

glucosylsphingosine (GlcSph)in the lysosomes of macrophages in several tissues, 

especially in the reticuloendothelial system [3-5]. These cells are commonly referred to 

as Gauchercells. More than 300 mutations in the GBA gene have been described [6]. 

Though this is rarely the case, Gaucher’s Disease (GD) may also be caused by a 

deficiency of saposin C (aGCase activator) [5]. 

The GD phenotype is expressed in different degrees from one individual to another, 

but three classic forms can be distinguished clinically based on neurological 

involvement: non-neuropathic (GD1), acute neuronopathic (GD2), and chronic 

neuronopathic (GD3) [7], the prevalence of which is 91.5%, 1.2% and 7.3%, 

respectively [8]. GD1may be asymptomatic or display a range of clinical 

manifestations, including hepatosplenomegaly, anemia, thrombocytopenia, bone crisis, 

osteonecrosis, diminished bone density, fractures and (less commonly) interstitial lung 

disease [9,10]. 

The boundaries between the threetypes are not clear due to the wide spectrum of 

symptoms and occasionally late-onset neurological manifestations (such as Parkinson’s 
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disease and peripheral neuropathy) observed in GD1. In fact, 

distinguishing GD types based on a single parameter can be 

very challenging. Therefore, some researchers prefer to view 

GD as a continuum of phenotypes [11]. Thoughpanethnic, GD is 

particularly prevalent among Ashkenazi Jews (1:400-800 

births). In comparison, the incidence in the general US 

population is 1:40,000-60,000 births [12]. GD severitymay be 

determinedby the level organ involvement. This requires careful 

analysis under malleable clinical criteria, laboratory testing 

and imaging, as described by Zimran and collegues [13]. 

Currently,the two most effective treatments for GD are Enzyme 

Replacement Therapy (ERT) and Substrate Reduction Therapy 

(SRT). Both approaches effectivelycontrol visceral, 

hematological and bone manifestations, there by improving 

patients’ quality of life [14]. 

LYSOSOMES AND CHANGES IN GD 

The role of lysosomes in GD has been studied since 1968 [15] 

to better understand the observed abnormal catabolism of 

GlyCer and subsequent accumulation inside lysosomes [16,17]. 

Despite considerableadvances in the currentknowledge of the 

genetic, molecular and biochemical aspects of GD, it is not fully 

understood how GlcCer accumulation in lysosomes causes 

disease at the cellular level [18], nor how metabolic changes 

influence liver metabolism and cardiovascular risk, both before 

and during long-term ERT/SRT [19].  

In addition to lysosomal storage diseases, acquired conditions 

(e.g., obesity and metabolic syndrome associated with insulin 

resistance and unhealthy dietary habits and sedentary 

lifestyle) are known to be strongly associated with lysosomal 

dysfunction and subsequent metabolic imbalance [19]. Recent 

studies suggest that compounds of the glycosphingolipid 

pathways acting as potential secondary messengers and 

directly or indirectly affecting intra- and intercellular 

relationships are involved in a range of pathologies, including 

increased insulin resistance and abnormal lipid trafficking [20]. 

HYPERMETABOLISM IN GD 

GD is characterized by systemic inflammation and increased 

energy expenditure, probably related to the activation of 

macrophages and the production of proinflammatory cytokines 

[19,21]. Hypermetabolism secondary to systemic inflammation 

in GD1 is partly reversed by ERT/SRT [21],sometimes with a 

subsequent ~5% ponderal gain, followed by weight 

stabilization.This increase in weight does not appear to be 

directly related to duration, doseor response to treatment 

[22].Other than that, ponderal gain is usually due to aging, 

unhealthy dietary habits and/or sedentary lifestyle, as 

observed in the general population [19]. Furthermore, in 

addition to causing glucosylceramide and glucosylsphingosine 

to accumulate in the lysosomes of macrophage cells and 

visceral organs, glucocerebrosidase deficiency has also been 

shown to promote mitochondrial dysfunction in several cellular 

and mouse models of GD [23].  

The association between GD (a lysosomal storage disorder) 

and insulin resistance (a membrane-related disorder) was first 

pointed out over 20 years ago, but the mechanisms involved 

have still not been fully explained [24]. The hypothesized 

association between increased insulin resistance and 

overweight in patients receiving ERT was not confirmed in a 

cross-sectional study conducted in Turkey [19], but GD is 

believed to be associated with peripheral insulin resistance, 

possibly through the influence of glycosphingolipids on insulin 

receptor function [25]. Prior to receiving ERT, Dutch GD1 

patients had a lower than expected prevalence of type 2 

Diabetes Mellitus (DM), despite the abnormal insulin resistance. 

However,once started on ERT,weight increased and the 

prevalence of DM rose to the level of the general population. 

It is not clear whether this phenomenon extends to other GD1 

populations (e.g., Ashkenazi Jews) with other, non-GD-related 

risk factors for DM [26]. 

The accumulation of GlyCerin GD influences lipid metabolism 

and intracellular concentrations and transport of gangliosides, 

phosphatidylcholine and sphingomyelin, there by altering lipid 

and lipoprotein plasma levels. In addition to these changes, 

apolipoprotein abnormalities have also been reported [27]. 

The association between GD and reduced levels of Low-

Density Lipoprotein (LDL), High-Density Lipoprotein (HDL), 

Apolipoproteín B (ApoB) and Apolipoprotein A1 (ApoA1) may 

be explained by the upregulation of LDL and HDL catabolism 

due to GD-related impairment of macrophage function 

[28,29]. On the other hand, the plasma levels of triglycerides 

and Apolipoprotein E (ApoE) are reportedly elevated in GD 

patients [28,30].  

HDL levels increase rapidly with ERT/SRT but remain lower in 

GD patients than in healthy controls, even after years of 
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treatment. There is no evidence to suggest this atherogenic lipid 

profile is associated with increased cardiovascular risk in GD 

patients, but so far very few prospective studies has been 

conducted [19,31]. The tendency of severe GD patients to 

have extremely low HDL levels (and the ability of ERT to 

elevate them) has led some authors to propose HDL as an 

inexpensive and reliable adjunctive biomarker for the 

diagnosis and monitoring of GD. However, no study has found 

significant correlations between low HDL levels and risk of 

atherosclerosis, ischemic heart disease, hypertension or DM 

[32]. 

HYPERFERRITINEMIA IN GD 

Iron (probably resulting from erythrophagocytosis) is stored as 

ferritin in Gaucher and non-Gaucher macrophages, especially 

in the spleen, bone marrow and liver (Kupffer cells). Iron 

overload likely increases the risk of cancer, Metabolic 

Syndrome (MetS) and Neurogenerative Disease [33]. In such 

cases, hyperferritenemia may reach the levels observed in 

Hereditary Hemochromatosis (HH), but the transferrin saturation 

percentage is usually normal in GD, as opposed to HH. There is 

no evidence for iron-associated cardiac or pancreatic disease 

in GD, but iron storage in osteoblasts is believed to contribute 

to osteopenia. 

The consequences of iron accumulation depend on individual 

differences in the classic and alternative pathways of 

macrophage activation. Thus, elevated ferritin levels may be 

used as a GD activity marker. However, it should be kept in 

mind that high ferritin levels in GD patients sometimes masks 

iron deficiency resulting from conditions like heavy menstrual or 

gastrointestinal bleeding.The truth is that, while significant 

advances have occurred in diagnosis and therapy, many basic 

aspects of GD remain poorly understood [34]. 

BONE LESIONS ASSOCIATED WITH GD 

Metabolic changes associated with the formation and 

remodeling of bones are evident in GD. Clinical manifestations 

are due to medullary infiltration of macrophages filled with 

glucocerebrosides which act directly by way of mechanical 

pressure and indirectly through cytokine-induced inflammation, 

there by modulating osteoblastic and osteoclastic activity. 

These changes include abnormal bone remodeling, osteopenia, 

osteoporosis, lytic lesionsand avascular necrosis. Among the 

clinical manifestations are bone pain, bone crisisand 

pathological fractures, leading to disability and progressive 

loss of quality of life [35,36]. Bone mineral density may also 

be influenced by the genetic variability of the Vitamin D 

Receptor (VDR) gene, the Estrogen Receptor (ESR1) gene, the 

collagen 1A1 gene, the Calcitonin Receptor Gene (CAL), the 

Osteoprotegerin Gene (TNFRSF11B; OPG) or the RANK gene 

(TNFRSF11A) across populations of GD patients [37]. Serum 

calcium (potentially serum phosphorus) and vitamin D levels 

should be monitored because vitamin D deficiency appears to 

be more common in GD than in the general population, and 

supplementation is highly recommended when the level of 

calcifediolis <75 nmol/L [36]. 

More research is needed to clarify changes in bone metabolism 

in GD. According to some authors, prior to the introduction of 

enzyme therapy, bone disease tended to worsen in patients 

submitted to splenectomy [38,39]. ERT has improved clinical 

symptoms and reduced the severity of bone disease and the 

need for splenectomy in GD patients [33,40,41]. 

METABOLIC SYNDROME DURING TREATMENT FOR GD 

Some GD patients undergoing long-term ERT develop MetS. 

However, due to the scarcity of detailed pre-treatment studies, 

a causal link has not yet been established [26]. In arecent 

Brazilian cross-sectional study,MetSwas a frequent finding in 

GD1 patients on ERT. Interestingly, MetS was positively 

associated with BMI, waist circumference, triglycerides, insulin 

and leptin levels, and negatively associated with adiponectin 

levels [22]. No cause-of-death information was available for 

approximately half the GD cases reviewed, but ERT/SRT 

appears to reduce mortality from visceral, pulmonary and 

skeletal complications and increase mortality from 

cardiovascular and cerebrovascular conditions [42]. Further 

studies are necessary to clarify whether the reported increase 

in cardiovascular mortality is due to GD-related metabolic 

disorders or the result of reduced mortality from classical GD-

related complications during ERT/SRT in patients reaching or 

surpassing the actuarial life expectancy [11]. 

In addition, GD patients are, like other adults, exposed to risk 

factors associated with unhealthy dietary habits and sedentary 

lifestyle. Aging GD patients may therefore be expected to 

acquire health problems prevalent in the elderly, such as 

cardiovascular morbidity, malignancy, neurodegenerative 

disease, dementia, Chronic Obstructive Pulmonary Disease 
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(COPD) and chronic liver and kidney disease. Finally, we 

believe more research is needed to clarify how ERT/SRT and 

lifestyle affect metabolic and nutritional parameters in GD and 

long-term prognosis. Among other things, metabolic studies can 

help develop disease activity markers for use in both treatment 

and surveillance and provide a more accurate picture of the 

natural history of GD. 
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