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ABSTRACT 

Venous catheters are increasingly used in medical care. However, these devices are 

easily colonized by microorganisms. Staphylococcus spp. are the dominant species in 

catheter-related infections because of their ability to form biofilms on their surfaces, 

giving them resistance to antimicrobial agents and leading to recalcitrant chronic 

infections and therapeutic failure. In addition, the emergence of methicillin-resistant 

Staphylococci is a global scourge for public health. In this review, an update of our 

knowledge on staphylococcal biofilms, their formation steps, regulation, resistance to 

methicillin, their involvements in the worldwide emergence of venous catheters-related 

infections and treatment strategies for biofilm prevention and eradication have been 

reported. 

INTRODUCTION 

Several bacterial species colonize the human body and could be both useful and 

dangerous for health. Among them, Staphylococcus aureus, which is a commensal of the 

skin, is considered a fearsome pathogen implicated in nosocomial infections [1], 

especially those related to medical devices such as venous catheters (Figure 1). The 

emergence of Methicillin-Resistant S. aureus (MRSA) is mainly the major clinical 

problem in hospitals [2]. Its ability to produce biofilm was considered a major 

virulence factor of pathogenesis [3] causing the failure of these devices [4]. Bacterial 

colonization on medical devices is the first step in the development of chronic infections 

and their persistence [5]. Biofilms consist of one or more species adhering to a biotic 

or abiotic surface and surrounded by an extracellular polysaccharide matrix 

produced by them [6].In recent years, it has become apparent that their importance in 

the medical community is crucial. Indeed, what makes these biofilms of paramount 

importance is their ability to resist antibiotic treatment and immune system attacks 

leading to therapeutic failure and persistence of infections [7]. In addition, biofilms 

are involved not only in the colonization of surfaces but they represent a reservoir of 

dissemination of bacteria in the body [8]. Venous catheters are often used for infusion, 

administration of drug and nutrition. However, the inappropriate use of these medical 

devices can lead to catheter-related infections, increasing morbidity and mortality, 

length of hospital stay and the cost of the care [9]. 

Staphylococcus species and their virulence factors involved in biofilm formation  

Staphylococcus spp. are Gram-positive cocci, non-motile, non-sporulated, aero-

anaerobic facultative, classified into two main groups, coagulase positive 
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staphylococci and, most of them, coagulase negative 

staphylococci “CNS” [10] and are part of the natural flora of 

the skin and mucous membranes of humans [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Staphylococcus spp. are opportunistic human pathogens with 

remarkable adaptability [12]. Staphylococcus epidermidis and 

S. aureus are the main cause of catheters-related infections due 

to their virulence factors, mainly biofilm formation [11]. In 

recent years, the clinical emergence of methicillin-resistant 

Staphylococcus strains has created many therapeutic challenges 

for microbiologists and clinicians [10]. When intravenous 

catheters are implanted in patients, they are rapidly coated 

with body fluid proteins, such as fibrinogen, fibronectin and 

collagen, facilitating adhesion of Staphylococcus cells 

expressing on their cell wall surface proteins called the 

Microbial Surface Components Recognizing Adhesive Matrix 

Molecules (MSCRAMMS), that bind specifically to the above 

mentioned proteins [13,14]. The production of Polysaccharide 

Intercellular Adhesin (PIA) by enzymes encoded by icaABCD 

operon and composed of linear N-acetyl glucosamine residues 

linked to β-1-6 is the main mechanism involved in biofilm 

formation that may contribute to the persistence of infections 

[3,15]. This operon is composed of four genes encoding four 

proteins that are involved sequentially in: synthesis of a poly-

N-acetylglucosamine polymer (icaA) in the presence of icaD, 

translocation of this polymer to the bacterial surface (icaC), 

deacetylation of the polymer to allow it to attach to the 

surface (icaB). However, the icaR gene plays the role of 

regulator of this operon [16]. This mechanism has been 

described for the first time in S. epidermidis [17]. These authors 

demonstrated that mutation of the transposon at the ica operon 

level of S. epidermidis altered PIA production and biofilm 

formation. The study of Mirzaee et al. [18] reported that 

12/31 biofilm producers S. aureus strains (38.7%) were icaA 

and icaD positive. More recently, Manandhan et al. [19] 

reported that 22.9% of the biofilm producers Staphylococcus 

strains possessed the icaAD genes. However, some 

Staphylococci species that do not express PIA can also produce 

biofilm. For example, Kord et al. [20] have shown that 4.8% of 

S. epidermidis strains were biofilm producers despite the 

absence of the ica genes. This suggests that the ability to 

produce biofilm is not always related to the expression of the 

ica genes and may involves other adhesins in cell aggregation 

and adhesion [15,21] such as biofilm-associated proteins (Bap) 

[22], Autolysins [23], fibronectin binding proteins (FnBP) [24], 

collagen binding proteins (Can) [25], elastin binding proteins 

(EbpS) [26], Protein A [27] and α-enolase (Eno) [28]. Adhesion 

factors of Staphylococcus species and their role in pathogenesis 

are represented in table 1.  

Regulation of Staphylococcus biofilm formation 

In Staphylococci, biofilm formation is controlled by two systems. 

The first is named accessory gene regulator (agr). This system 

produces auto-inducing peptides that regulate the expression 

of virulence factors as a function of bacterial density [29,30]. 

Each Staphylococcus species contains an agr operon and a 

specific auto-inducer peptide that vary in length and sequence. 

In addition, all these peptides contain a thiolactone nucleus and 

an N-terminal extremity [31]. The proteins that intervene in the 

quorum sensing are regulated by the agrBDCA operon. This 

operon encodes a two-component system, AgrC and AgrA that 

will detect the auto-inducing peptides produced by the AgrB 

and AgrD proteins [29]. When the bacterial density is high, the 

self-inducing peptide activates the AgrC histidine kinase which 

in turn phosphorylates the AgrA response regulator. The latter 

binds the promoter P2 which activates RNAII which in turn 

encodes the proteins AgrA, AgrB, AgrC and AgrD and to the 

promoter P3 which activates the transcription of the RNAIII 

which in turn activates the expression of the genes [32,33]. The 

second regulator system is called staphylococcal accessory 

regulator A (sarA) that regulates also other virulence factors by 

 

Figure 1: Scanning electron microscopy (SEM) examination 

of MRSA biofilm formation on central venous catheter 

implanted in rats [137]. 
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modulation of agr expression [34]. Sigma B (sigB) is an alternative factor that regulates the expression of survival 

factors against oxidative stress, antibiotics, temperature variations and other environmental stress [35]. 

 

 

 

Staphylococcal enzymes involved in auto-biofilm dispersion 

Biofilm dispersion is caused by the production of extracellular 

enzymes and surfactants that degrade the polymeric matrix 

[36]. Among these enzymes, proteases are mainly distinguished 

because of their ability to degrade extracellular proteins, 

major components of the matrix [37]. These molecules, 

regulated by agr, sarA and sigB systems, are considered 

among the most important virulence factors involved in the 

development of biofilms [38]. In addition, over-expression of 

proteases regulated by sarA and sigB systems has been 

reported to improve planktonic growth suggesting an inverse 

relationship between biofilm formation and expression of these 

enzymes [39]. S. aureus express one metalloprotease 

(aureolysinAur), two cysteine proteases (staphopains SspB and 

ScpA) and seven serine proteases (SspA and V8) [36]. 

However, S. epidermidis produces fewer proteases such as the 

metalloprotease SepA, the serine protease Espand the cysteine 

protease EcpA [38]. These enzymes are involved on the one 

hand in the acquisition of peptide nutrients but also in the 

evasion of the immune system of the host by interfering with 

neutrophils [40] and degradation of specific proteins 

composing the biofilm matrix in order to release planktonic 

bacteria. For example, V8 protease has the ability to cleave 

fibronectin binding protein and Bap. UreolysinAur is able to 

degrade clumping factor b and Bap. Nevertheless, staphopains 

A and B allow dispersion without specific protein cleavage 

[37]. Contrariwise, the metalloprotease SepA of S. epidermidis 

is involved in the intercellular accumulation stage where it 

cleaves the AtlE autolysin which will release the DNA necessary 

for the formation of the matrix “eDNA” [38]. Nucleases are the 

second class of enzymes produced by Staphylococcus spp. that 

degrade extracellular DNA (eDNA). In S. aureus, the system 

SaeRS is involved in nucleases regulation, which protects the 

bacteria against neutrophils released by the host during their 

detachment from the biofilm [41]. Nuclease (Nuc) and nuclease 

2 (Nuc2) are the most common enzymes produced by S. aureus 

[36]. The implication of nucleases during biofilm dispersion has 

been demonstrated using nuclease deficient S. aureus strains 

that inhibited the liberation of planktonic bacteria [42]. PSMs 

(phenol soluble modulins) are peptide surfactants produced by 

S. aureus and S. epidermidis, and are also involved in the 

dispersion of biofilms. Their expression is controlled by the agr 

system [43]. PSMδ and PSMβ are the effector molecules 

produced by S. aureus and S. epidermidis respectively [39,44] 

showed that anti-PSMβ factors inhibited S. epidermidis strains 

spread from catheters, using mouse model of medical device 

related infection, concluding the importance of these surfactants 

in biofilm dispersal. Nonetheless, these surfactants are also 

involved during the stage of maturation of the biofilm and play 

Factors Gene Function Reference 

Adhesins 

biofilm associated protein 
bap 

 
Adhesin involved in attachment, adhesion on surfaces, and biofilm formation. Seng et al., [3]. 

Autolysin/adhesion atLE 
Peptidoglycan hydrolase that plays a role in the degradation of the bacterial wall 

facilitates adhesion to polystyrene surfaces and biofilm production. 
Porayath et al., [23]. 

Fibronectin binding protein 
fnBP A 

and B 

This adhesin is involved in primary adhesion of staphylococcal strains to surfaces 

and also in aggregation and intercellular adhesion. 
Kırmusaoğlu, [149]. 

Collagen binding protein can 
This extracellular protein of S. aureus binds to collagen and is involved in bacterial 

adhesion and immune evasion. 

Herman-Bausier et al., 

[25]. 

Elastin binding protein ebpS 
Protein with a molecular weight of 25 kDa,present on the surface of S. aureus cells 

and promotes the colonization of mammalian tissues, facilitating pathogenesis. 

Downer et al., [150] ; 

Kot et al., [28]. 

Protein A spa 

This protein expressed by all strains of S. aureus is able to block 

opsonophagocytosis by binding to Fcɤ in the presence of antibodies and plays an 

important role in the immune evasion and pathogenicity of Staphylococci. 

Hong et al., [27] ; 

Lacey et al., [151]. 

α-enolase eno 
This protein expressed on the surface of Staphylococci is able to bind to laminin 

thus allowing adhesion to the extracellular matrix and tissue colonization of the host. 
Kot et al., [28]. 

Table 1: Adhesion factors involved in biofilm formation in Staphylococcus spp. 
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a major role in the formation of the three-dimensional structure 

(thickness, volume, roughness) [45].  

Mechanism of Staphylococcus biofilm formation on 

intravenous catheters 

Biofilm formation in S. aureus occurs in three stages: 

adhesion/attachment, maturation and dispersion [46]. After 

insertion of the catheter, the initial adhesion of the bacteria is 

done through the van der walls, electrostatic and hydrophobic 

interactions [46]. Once the surface of these devices is covered 

with host proteins (collagen, fibrinogen, fibronectin, vitronectin), 

the bacteria express genes that encode the MSCRAMMs that 

will interact with them [47]. The irreversible adhesion to the 

catheter is due to the production of the extracellular matrix 

[48]. Once the attachment is over, the quorum sensing regulator 

agr represses the expression of these factors which are useless 

[39]. During the maturation stage, the bacteria will become 

intergraded and multiply, producing a heterogeneous 

exopolysaccharide matrix composed of proteins, eDNA and 

teichoic acids, thus forming a three-dimensional structure also 

called "mushroom". Simultaneously, an intercellular aggregation 

took place after the PIA synthesis [47]. The bacteria organize 

themselves in the biofilm according to their metabolism and 

respiratory type. Thus, strict anaerobic bacteria will live at the 

bottom of the biofilm [48]. In addition, bacterial populations 

characterized by a very slow growth called “dormant or 

persistent cells” are observed during the exponential and 

stationary growth phases. These cells are endowed with a high 

resistance to antibiotics which can be the cause of the 

persistence of infections [49].Formation of biofilm is usually 

followed by a dispersal step. The latter is characterized by the 

release of planktonic bacteria in order to infect other sites and 

to form new biofilms [48]. This step can be triggered either by 

external physical forces (shearing fluids) or by the production 

of extracellular enzymes such as proteases, nucleases and PSM 

[37] as described above.  

Methicillin-resistant Staphylococcus spp. (MRSA) 

Staphylococcus aureus is one of the bacteria with an incredible 

ability to acquire resistance to a large number of antibiotics 

[50]. In recent years, the emergence of methicillin resistance in 

these bacteria constitutes a real global problem [51]. Indeed, it 

has been estimated that a 20% mortality rate is associated 

with infections caused by methicillin-resistant S. aureus (MRSA) 

[52]. MRSA were reported for the first time in 1961 [53]. Their 

resistance is due to the presence of the penicillin binding 

protein PBP2a, which has a low affinity to β-lactams. This 

protein is encoded by the mecA gene, which is carried in a 

mobile genomic element called staphylococcal cassette 

chromosome mec (SCCmec) [54]. 

Worldwide spread of venous catheter infections associated 

to Staphylococcus spp. 

Venous catheters are increasingly used and are considered an 

essential element in modern medicine [55]. It has been 

reported that more than 80% of hospitalized patients have a 

central or peripheral intravascular catheter during their stay in 

hospital [56]. Indeed, a large number of microorganisms have 

been implicated in medical device associated infections such as 

intravenous catheters. S. aureus and S. epidermidis are the most 

incriminated species [57]. Their ability to form biofilm makes 

these infections more complicated [15]. These biofilms can be 

formed in the catheter lumen or on its outer surface [7] and can 

cause increase in morbidity, mortality, length of hospital stay 

and hospitalization costs [58]. In Italy, a retrospective study 

related to infections associated with central venous catheters 

was conducted over a period of 4 years (from 2007 to 2010). 

The prevalence of S. epidermidis and S. aureus was 12.78% 

and 10.55% respectively during this period [59]. A recent 

study in Pakistan showed that 64% of catheters were colonized 

by Gram positive bacteria and S. aureus was the most isolated 

species (39%) followed by S. epidermidis (16%) with the 

prevalence (59%) of MRSA [60]. MRSA infections have been a 

huge problem in hospitals since their emergence in the 1980s 

[61]. Khalil and Azqul [62] reported that CNS strains were the 

most isolates in catheters and 9.9% of patients hospitalized in 

cardiac care unit had a catheter related-bloodstream infection. 

Other recent studies conducted in Sweden, Iran, Belgium, India, 

USA and Poland reported also that Staphylococcus spp. strains 

were the most isolated from intravascular catheter infections 

[21,63-67]. In Algeria, a study [68] at the hemodialysis 

department of the Setif University Hospital recorded a rate of 

22.4% Central Venous Catheter Related-Infections (CVC-RI). 

Among the causative microoganisms, CNS and S. aureus were 

found at a rate of 23.5% each and were all resistant to 

methicillin and other antibiotics [68]. These authors also 

mentioned that the weak hand hygiene and disinfection of the 
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skin before placement of catheters were the cause of 58.8% 

and 88.8% of CVC-RI respectively. Furthermore, in Mexico, 

Pérez-Zárate et al. [55] demonstrated that hand washing, use 

of sterile gown and preparation of medicines were considered 

as risk factors for biofilm formation and catheter related 

infections. In China, it was found that 57 out of 1523 

hospitalized patients, in a kidney intensive care unit, had 

central venous Catheter Related Blood Stream Infection (CRBSI) 

and S. aureus was incriminated in 10 cases [69]. MRSA was 

reported the cause of 40% of hemodialysis catheter-related 

bacteremia in Taipei Veterans General Hospital-Taiwan [70]. 

Duration of catheterization was reported as major risk factor 

for biofilm formation and subsequent bacterial dissemination. 

Indeed, Passerini et al. [71] showed that 81% of venous 

catheters placed in patients for 1 to 14 days were colonized 

by bacteria in biofilm. In Mexico, another group of researchers 

found that patients using a longer central venous catheter were 

more likely to develop a catheter-related infection [56,68] 

confirmed also that longer duration of catheterization (≥ 10 

days) is considered as risk factor of CVC-RI.  

Treatment strategies for Staphylococcus spp. biofilm related 

infections  

The infections caused by Staphylococcus spp. biofilms constitute 

a major problem of global public health because of the 

persistence and recalcitrance of these and the therapeutic 

failure that biofilms confer on them, increasing the mortality 

rate, morbidity but also hospital costs. For this, the development 

of anti-biofilms treatment has become a major priority for 

researchers for their prevention and eradication [46,72]. 

Several global studies have described several strategies to 

prevent and treat these biofilms such as nanoparticles, 

antimicrobial peptides, enzymes, bacteriophages, ultrasound 

therapy, photodynamic therapy, antimicrobial catheter lock 

solution, plants extracts and chelating agents [46]. 

Antimicrobial peptides: Antimicrobial peptides are positively 

charged cationic molecules, amphipathic and composed of 11 

to 50 amino acids [73,74]. The first peptide discovered was LL-

37 cathelicidin of human origin [75]. These molecules have a 

broad spectrum of activity (Gram negative and positive 

bacteria, fungi). They act by permeabilization of the cell 

membranes which leads to the appearance of pores thus 

leading to bacterial lysis [76]. Recent studies reported the anti-

biofilm effect of these peptides. For example, Zapotoczna et 

al. [77] recorded that the peptide D-Bac8c2,5Leu alone or 

combined with antibiotics seem to be a potential agent to treat 

S. aureus intravenous catheter related infections [78]. 

Demonstrated the capacity of the peptide Brevinin-1GHa (skin 

secretion of the frog Hylarana guentheri) to destabilize the cell 

membrane and eliminate the biofilm of S. aureus. Shurko et al. 

[79] showed also the strong inhibition of S. aureus biofilm by 

two peptides LL-13 and LL-17, which derivates from LL-37. 

Recently, a Dutch study showed that the combination of 

teicoplanin with SAAP-148 or SAAP-276 peptides showed a 

strong interaction with S. aureus biofilms [80]. Another Dutch 

study reported that SAAP-148 peptide seems to have an 

excellent antibacterial and anti-biofilm activities against MRSA 

biofilms and persisters cells [81]. The peptide derivatives 

(SPLUNC1 Δα4 SPLUNC1 Δα4M1) showed significantly higher 

anti-biofilm activity than the SPLUNC1 parent molecule and this 

is due to the α4 fraction, which has this activity. The latter can 

be improved by increasing the cationic and Tryptophan content 

(improvement of hydrophobicity and amphipathicity) [82]. 

Other peptides showed an anti-biofilm activity against 

Staphylococcus spp. as 17BIPHE2 (derivates from the human 

peptide LL-37) [83],citropin 1.1 (isolated from the frog Litoria 

citropa) and temporin A (isolated from the frog Rana 

temporaria) [84], peptide FLIP7 (isolated from maggots 

Calliphora vicina) [85], KR-12 and KE-18 [86], tachyplesin I 

(isolated from horseshoe crab) [87]. 

Nanoparticles: In recent years, it has emerged that 

nanotechnology is a promising way to treat infections. This 

technology uses metal nanoparticles that allow the elimination 

of bacteria by interacting with their components such as 

proteins, nucleic acids, peptides. This interaction causes the 

release of reactive oxygen, hydrogen peroxide (H2O2), 

hydroxyl radical (*OH) that disrupt cell membranes leading to 

bacterial lysis[88]. Moreover, these nanoparticles are 

characterized by their small size and high surface-to-mass ratio 

facilitating interactions [46,89]. Demonstrated that 

rhamnolipids (RL) coated with silver (Ag) and iron oxide 

(Fe3O4) exhibited important activity against S. aureus biofilms. 

This is due to the release of the reactive oxygen molecules. In 

addition, these RLs modify the hydrophobicity of the surfaces 

reducing bacterial adhesion [90]. Showed that the synergistic 
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combination of silver and antibiotics (fosfomycin, daptomycin, 

vancomycin, oxacillin) has eradicated S. aureus biofilm. [88] 

demonstrated recently the promising effect of Ag-thymol 

(ATNPs), Ag-usnic acid (AUNPs), Cu-thymol (CTNPs), and Cu-

usnic acid (CUNPs) on MRSA biofilms. Other studies 

demonstrated also the anti-biofilm activity of Nitric Oxide 

“NO” [91], Zink oxide “ZnO” [92], gold [93] and SiO2-

Gentamicin nanohybrids[94]. 

Enzymes: Bacterial enzymes allow the dispersion of biofilms 

by acting on several components of the matrix (proteins, 

exopolysaccharids, eDNA). The extraction and purification of 

these enzymes can be used as a new alternative for the 

prevention and eradication of biofilms. Several groups of 

enzymes have been studied [37]. The first group is Proteases. 

In 2013, a serine protease V8 was reported as a promising 

enzyme to disturb staphylococcal biofilm [95]. Elchinger et al. 

[96] reported also that lavourzyme protease had a significant 

activity against S. epidermidis biofilm.The enzymes lysostaphin, 

α-amylase, bromelain, and papain tested against S. aureus 

biofilms (cultured in 10% human plasma) showed, after 2 and 

24 hours of treatment, a decrease in biofilm biomass: up to 

76% for lysostaphin, 97% for α-amylase and 98% for 

bromelain and papain. The three last proteases seem to be 

promising agents for biofilm treatment [97]. Similarly, it was 

reported that the proteinase K (2 µg/ml) inhibited the biofilm 

of bap-positive S. aureus V329, but it showed any effect on 

their planktonic cells [6]. Deoxyribonucleases can also be used 

as anti-biofilm agents. The nuclease NucB, isolated from Bacillus 

licheniformis was effective against staphylococcal biofilms [98]. 

DNase I allowed the disturbance of S. aureus biofilm by 

degradation of eDNA [99]. Another group of enzymes have 

also been used as a means of dispersing biofilms: glycoside 

hydrolases. The same study cited previously showed that the 

Dispersin B disrupted S. aureus biofilms by degrading poly 

(1,6) -N-acetyl-D-glucosamine polysaccharide [99]. Flemming 

et al. [100] showed also the dispersion of S. aureus biofilm by 

adding α-amylase (cleaves glycosidic link α (1,4) and cellulase 

(cleaves glycosidic link β(1,4). The enzyme that cleaves 

hyaluronic acid of the animal matrix, hyaluronidase is also able 

to disrupt aggregates forming biofilms [101]. The effect of 

Poly-N-Acetylglucosamine (PNAG) depolymerase (DA7) 

against staphylococcal biofilms have been recently 

demonstrated by [102]. This hydrolase was able to destabilize 

the biofilm by destruction of PNAG, the major polysaccharide 

of the matrix.  

Antimicrobial catheter lock solutions: The antimicrobial 

catheter lock is considered as a novel strategy to treat 

intravascular catheter infection [103]. Antiseptics such as 

ethanol and Taurolock have been reported to be effective at 

eradicating biofilms aged three days or more [104]. The 

antimicrobial agents ML: 8 (1% v/v) and Citrox (1% v/v), 

which are generally used in the treatment of periodontal 

infections, were able to reduce staphylococcal biofilm biomass 

(> 97%) after only 24 hours of treatment [105]. Recent 

Spanish study showed that the administration of the 

combination of ethanol (40%) and heparin (60 IU) during 72 

hours was effective in vitro against staphylococcal biofilm 

[106].Fibrinolytic agents as plasmin, streptokinase, and 

nattokinase (alone or combined with antibiotics) were 

successfully efficient in disturbance of S. aureus biofilms in rat 

model of intravascular catheter infection in vivo [103]. Bhatt et 

al. [107] demonstrated the anti-biofilm effect of a novel 

antibiotic-free formed from gas Plasma-Activated Disinfectant 

(PAD). This agent allowed reducing the biomass of the 

staphylococcal biofilm (MRSA and S. epidermidis) after 1 hour 

and a re-growth of the bacteria was not observed after 24 

hours of incubation, making it a promising means for the 

eradication of biofilms. Other studies reported also the 

antimicrobial catheter lock solutions [108-111]. 

Antibodies: Since the production of new antibiotic molecules 

has become limited in recent years, researchers have resumed 

their interest in treating monoclonal antibodies as an 

alternative for preventing biofilm and treating infections that 

directly targets the pathogen [47,112]. An American study 

showed that PhnD-specific antibodies (Phosphonate ABC 

transporter substrate binding protein) inhibited S. aureus 

biofilm formation by preventing their fixation and aggregation 

[113]. Den Reijer et al. [114] showed that the immunogenic 

IsdA and SA0688 seem to be potential novel agents to prevent 

or treat Staphylococcus biofilm-associated infections. The in vivo 

effect of human antibody TRL1068 alone or with vancomycin 

against MRSA biofilms was investigated using a model of 

catheter-induced aortic valve infective endocarditis in rats. The 

results showed significant reductions in biofilm [112]. 
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Bacteriophages: Bacteriophages are natural viruses that infect 

and replicate inside host bacteria, causing cell lysis and the 

release of new virions that infect other target bacteria. As a 

result, phages can enter biofilms; regulate the cell growth, 

making them a promising strategy for treating bacterial 

infections [115-116]. These phages have more advantages 

unlike antibiotics such as their activity on multi-drug resistant 

strains, low harmful effect on eukaryotic host cells, rapid 

reproduction and ease of isolation and low cost of production 

but mainly their high anti-biofilm potential [116]. In 2017, an 

American study investigated the anti-biofilm potential of phage 

lysin CF-301 against staphylococcal biofilms. The authors 

showed that this phage-lysin disrupted biofilm with minimal 

biofilm eradicating concentration 90 (MBEC90) values of 0.25 

μg/ml (MRSA). CF-301 had an anti-biofilm activity at very low 

concentrations against MRSA biofilms formed on catheters, but 

also on mixed biofilms (S. aureus and S. epidermidis) [117]. 

Tkhilaishvili et al. [118] showed that bacteriophage Sb-1 had a 

synergistic effect with specific antibiotics ((fosfomycin, rifampin, 

vancomycin, daptomycin or ciprofloxacin) for the eradication 

of MRSA strains by degrading their extracellular matrix. The 

synergistic effect of the combination of PYO phage and 

antibiotics was also studied by Dickey and Perrot [119]. Other 

studies have also reported the potential anti-biofilm effect of 

phages [102,115,120,121]. 

Plants extracts: Since antiquity, humans use plants and their 

extracts as drugs for the treatment of infections [122]. In fact, 

these plants had several anti-inflammatory, antibacterial, 

antithrombotic, anti-allergic, hepato-protective and anti-

carcinogenic activities [46]. The plant components that have 

strong antibacterial activity are classified as 

phytoalexins[123]. In addition, essential oils are also 

considered effective alternatives to antibiotics and antiseptics 

[124]. These aromatic oils are extracted from aromatic plants 

and contain various secondary molecules that play a protective 

role for plants [125]. In recent years, several studies have been 

interested in the anti-biofilm activities of plant extracts. For 

example, in 2016, an Iranian study demonstrated in vitro a 

strong anti-biofilm activity of coriander essential oil 

(Coriandrum sativum L.) against S. aureus with a Minimal 

Inhibitory Concentration (MIC) of 0.8 μl /ml [122]. Gandhi et 

al. [123] studied the effect of Sesbania grandiflora extracts 

against S. aureus biofilm and observed that this plant, which 

contains several molecules (alkaloids, flavonoids, saponins and 

tannins), inhibited carbohydrates and proteins (major 

components of the S. aureus biofilm matrix) thereby reducing 

biofilm formation. Khan et al. [126]. Found that the ethanolic 

extract of Zanthoxylum armatum fruits inhibited the quorum 

sensing of S. aureus (IC50= 32–256 μg/ml). Another recent 

Chinese study showed that peppermint essential oil inhibited S. 

aureus biofilm formation at 0.25 mg/ml and eradicated it at 

concentration ≥4 mg/ml [124]. Other studies have reported 

the anti-biofilm activity of Aloe vera [127], Allium stipitatum 

[128], Syzygium cumini L. Skeels [129] extracts, and Lippia 

sidoides, Thymus vulgaris and Pimenta pseudochariophyllus 

essential oils [130]. 

Metal chelators, sulfhydryl compounds: Another group of 

molecules with antimicrobial activity is the chelating agents that 

act on the biofilm by sequestering metal ions (iron, magnesium 

and calcium). These metal ions play an important role in the 

production of many proteins involved in biofilm formation such 

as adhesins and proteases [131]. Maisetta et al. [132] 

demonstrated that Ethylenediamine Tetra-Acetic Acid (EDTA) 

combined with the peptide (temporin 1Tb) was able to kill S. 

epidermidis in biofilm on silicone catheters . Martinez-Andrade 

et al. [133] showed during their in-vitro study that 17% EDTA 

combined with silver nanoparticles (AgNPs) had antimicrobial 

activity against S. aureus biofilms. In addition, this cationic 

chelator destabilizes biofilms and prevents their adhesion 

[134]. An Australian study reported that the iron chelator 

“deferiprone” seems to be a promising molecule to treat 

Staphylococcus biofilms by disrupting the synthesis of the PIA 

[72]. This iron chelator in combination with antibiotics 

eradicated the S. epidermidis biofilm [135]. Another study 

recorded also the anti-biofilm effect of iron chelators 2,2′-

dipyridyl (2DP) and 1,2,3,4,6-Penta-O-Galloyl-b-D-

Glucopyranose (PGG) on S. aureus biofilm formation [136]. On 

the other hand, other molecules such as sulfhydryl compounds 

such as dithiothreitol, beta-mercaptoethanol and cysteine also 

appear to have a significant antibacterial effect against S. 

aureus biofilm. These molecules are able to inhibit the formation 

of PIA, major component of the matrix of Staphylococci 

[46,72]. The study cited previously demonstrated that the use 

of a sulfhydryl compound (L-cycteine) at a concentration of 
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78µM in combination with the peptide 1Tb had reduced the 

biosynthesis of S. epidermidis ATCC 35984 PIA[132]. 

Nitric oxide: Nitric oxide (NO) is a diatomic and lipophilic 

gaseous molecule that plays a role in cellular signaling and 

immunity. This molecule has also an anti-inflammatory, 

bactericidal and bacteriostatic effect [137]. Furthermore, the 

NO signaling molecule plays a major role in dispersion of 

biofilms, which has been associated with a conditional reduction 

of c-di-GMP leading to matrix degradation and bacterial 

motility [138]. Several recent studies reported its positive 

effect on Staphylococcus biofilm making it a good alternative in 

therapeutic [137,139,140]. 

Photodynamic, Ultrasound and Laser Shock waves therapy: 

Photodynamic therapy is a new antibacterial alternative using 

photosensitizing molecules activated in the presence of O2 by 

the light generating an oxidation of the biological molecules 

causing the destruction of the target microorganism. The 

advantage of this therapy is the lack of selection of resistance, 

but also, the low cost of treatment and the low risk of side 

effects [141]. Several studies reported that the photosensitizer 

5-aminolevulinicacid (alone or combined with antibiotics) [142], 

ZnPcn+ [143], Chlorin e6 (Ce6) [144], RB (RB-aPDT) (alone or 

combined with gentamicin) [141] and toluidine blue O [145] 

seem to be potential alternatives to treat S. aureus biofilm 

related infections. Other therapies such as ultrasound and laser 

shock waves seem also to give good results in the eradication 

of biofilms. The advantage with these physical methods is that 

they are non-invasive, do not cost much and the risk of inducing 

bacterial resistance is very low [146-148]. 

CONCLUSION 

This review allowed us to point out that the emergence of 

catheter-related infections caused by staphylococcal biofilm, 

particularly SARM, and linked to high mortality and morbidity, 

is a universal public health problem. Surveillance of these 

infections has become a challenge for clinicians and 

microbiologists. Measures and training on hygiene rules and 

placement of venous catheters should be taken to control the 

onset of these infections and in particular to ensure patient 

safety. In addition, the major problem with these infections is 

that the biofilm confers on bacterial populations increased 

resistance to antibiotics causing a therapeutic failure. As a 

result, the development of new strategies as an alternative to 

antibiotics has become a real challenge for the control and 

eradication of staphylococcal biofilms in recent years. Despite 

the discovery of many strategies, unfortunately, some of them 

cannot be administered to patients such as chelators, 

nanoparticles toxic at certain doses and bacteriophages. 

Further research should be based on natural molecules such as 

antimicrobial peptides, which look promising for the treatment 

of infections. In addition, several researchers have so far 

demonstrated the in vitro anti-biofilm potential of most 

molecules and therapies (alone or in combination). However, 

additional studies need to be conducted to validate these 

findings, such as cytotoxicity, genotoxicity and pharmacology 

of the molecules, as well as in vivo studies. 
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